Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient estimation for a smoothing thin plate spline in a two-dimensional space (2404.01902v1)

Published 2 Apr 2024 in stat.CO and stat.OT

Abstract: Using a deterministic framework allows us to estimate a function with the purpose of interpolating data in spatial statistics. Radial basis functions are commonly used for scattered data interpolation in a d-dimensional space, however, interpolation problems have to deal with dense matrices. For the case of smoothing thin plate splines, we propose an efficient way to address this problem by compressing the dense matrix by an hierarchical matrix ($\mathcal{H}$-matrix) and using the conjugate gradient method to solve the linear system of equations. A simulation study was conducted to assess the effectiveness of the spatial interpolation method. The results indicated that employing an $\mathcal{H}$-matrix along with the conjugate gradient method allows for efficient computations while maintaining a minimal error. We also provide a sensitivity analysis that covers a range of smoothing and compression parameter values, along with a Monte Carlo simulation aimed at quantifying uncertainty in the approximated function. Lastly, we present a comparative study between the proposed approach and thin plate regression using the "mgcv" package of the statistical software R. The comparison results demonstrate similar interpolation performance between the two methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Mario Bebendorf. Hierarchical matrices. Springer, 2008.
  2. Reproducing kernel Hilbert spaces in probability and statistics. Springer Science & Business Media, 2011.
  3. M Bevilacqua and V Morales-Onate. Geomodels: a package for geostatistical gaussian and non gaussian data analysis. R package version, 1:3–4, 2018.
  4. Structured Matrices in Numerical Linear Algebra: Analysis, Algorithms and Applications, volume 30. Springer, 2019.
  5. Thin plate spline model under skew-normal random errors: estimation and diagnostic analysis for spatial data. Journal of Statistical Computation and Simulation, pages 1–21, 2022.
  6. Linear-cost covariance functions for gaussian random fields. Journal of the American Statistical Association, pages 1–18, 2021.
  7. Geostatistics: modeling spatial uncertainty, volume 497. John Wiley & Sons, 2009.
  8. Bayesian probabilistic numerical methods. SIAM review, 61(4):756–789, 2019.
  9. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische mathematik, 31(4):377–403, 1978.
  10. Noel Cressie. Geostatistics. The American Statistician, 43(4):197–202, 1989.
  11. Smoothing and interpolating noisy gps data with smoothing splines. Journal of Atmospheric and Oceanic Technology, 37(3):449–465, 2020.
  12. Rcpp: Seamless r and c++ integration. Journal of statistical software, 40:1–18, 2011.
  13. Rcpparmadillo: Accelerating r with high-performance c++ linear algebra. Computational Statistics & Data Analysis, 71:1054–1063, 2014.
  14. Gregory E Fasshauer. Meshfree approximation methods with MATLAB, volume 6. World Scientific, 2007.
  15. Scalable gaussian process computations using hierarchical matrices. Journal of Computational and Graphical Statistics, 29(2):227–237, 2020.
  16. Nonparametric regression and generalized linear models: a roughness penalty approach. Crc Press, 1993.
  17. Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49 of Springer Series in Computational Mathematics. Springer, Heidelberg, 2015. ISBN 978-3-662-47323-8; 978-3-662-47324-5. doi: 10.1007/978-3-662-47324-5. URL https://doi-org.usm.idm.oclc.org/10.1007/978-3-662-47324-5.
  18. Kriging and splines: An empirical comparison of their predictive performance in some applications: Comment. Journal of the American Statistical Association, 89(426):401–403, 1994.
  19. Probabilistic numerics and uncertainty in computations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2179):20150142, 2015.
  20. Methods of conjugate gradients for solving. Journal of research of the National Bureau of Standards, 49(6):409, 1952.
  21. Kenneth L Ho. Flam: Fast linear algebra in matlab-algorithms for hierarchical matrices. Journal of Open Source Software, 5(51):1906, 2020.
  22. Stochastic local interaction model: An alternative to kriging for massive datasets. Mathematical Geosciences, pages 1–43, 2021.
  23. MF Hutchinson and PE Gessler. Splines—more than just a smooth interpolator. Geoderma, 62(1-3):45–67, 1994.
  24. Smoothing noisy data with spline functions. Numerische Mathematik, 47:99–106, 1985.
  25. Hierarchical matrix approximation for kernel-based scattered data interpolation. SIAM Journal on Scientific Computing, 39(5):A2287–A2316, 2017.
  26. Domain decomposition methods in scattered data interpolation with conditionally positive definite radial basis functions. Computers & Mathematics with Applications, 77(4):1178–1196, 2019.
  27. A spatial interpolation method based on radial basis function networks incorporating a semivariogram model. Journal of Hydrology, 288(3-4):288–298, 2004.
  28. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–498, 2011.
  29. Likelihood approximation with hierarchical matrices for large spatial datasets. Computational Statistics & Data Analysis, 137:115–132, 2019.
  30. M. Löhndorf and J. M. Melenk. On thin plate spline interpolation. In Spectral and high order methods for partial differential equations—ICOSAHOM 2016, volume 119 of Lect. Notes Comput. Sci. Eng., pages 451–466. Springer, Cham, 2017. doi: 10.1007/978-3-319-65870-4_3. URL https://doi-org.usm.idm.oclc.org/10.1007/978-3-319-65870-4_3.
  31. Tom Lyche. Numerical linear algebra and matrix factorizations, volume 22. Springer Nature, 2020.
  32. Pierre Marchand. Schwarz methods and boundary integral equations. PhD thesis, Sorbonne Université, 2020.
  33. Georges Matheron. Principles of geostatistics. Economic geology, 58(8):1246–1266, 1963.
  34. Iterative representing set selection for nested cross approximation. Numerical linear algebra with applications, 23(2):230–248, 2016.
  35. Douglas Nychka. Bayesian confidence intervals for smoothing splines. Journal of the American Statistical Association, 83(404):1134–1143, 1988.
  36. A multiresolution gaussian process model for the analysis of large spatial datasets. Journal of Computational and Graphical Statistics, 24(2):579–599, 2015.
  37. A modern retrospective on probabilistic numerics. Statistics and Computing, 29(6):1335–1351, 2019.
  38. Spatial regression models, response surfaces, and process optimization. Journal of Computational and Graphical Statistics, 6(2):224–241, 1997.
  39. Basic steps in geostatistics: the variogram and kriging. Technical report, Springer, 2015.
  40. Radial basis functions with compact support for multivariate geostatistics. Stochastic environmental research and risk assessment, 27:909–922, 2013.
  41. Comparing interpolation techniques for annual temperature mapping across xinjiang region. In IOP Conference Series: Earth and Environmental Science, volume 46, page 012028. IOP Publishing, 2016.
  42. The fast solution of boundary integral equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York, 2007. ISBN 978-0-387-34041-8; 0-387-34041-6.
  43. Interpolation of spatial data–a stochastic or a deterministic problem? European Journal of Applied Mathematics, 24(04):601–629, 2013.
  44. Application of thin-plate splines in two dimensions to oceanographic tracer data. Journal of Atmospheric and Oceanic Technology, 28(11):1522–1538, 2011.
  45. Grace Wahba. Smoothing noisy data with spline functions. Numerische mathematik, 24(5):383–393, 1975.
  46. Grace Wahba. Bayesian “confidence intervals” for the cross-validated smoothing spline. Journal of the Royal Statistical Society: Series B (Methodological), 45(1):133–150, 1983.
  47. Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.
  48. Smoothing spline anova for exponential families, with application to the wisconsin epidemiological study of diabetic retinopathy: the 1994 neyman memorial lecture. The Annals of Statistics, 23(6):1865–1895, 1995.
  49. Yuedong Wang. Smoothing splines: methods and applications. CRC Press, 2011.
  50. Holger Wendland. Scattered data approximation, volume 17. Cambridge university press, 2004.
  51. Holger Wendland. Computational aspects of radial basis function approximation. In Studies in Computational Mathematics, volume 12, pages 231–256. Elsevier, 2006.
  52. Simon N Wood. Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1):95–114, 2003.
  53. Simon N Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(1):3–36, 2011.
  54. Simon N Wood. Generalized additive models: an introduction with R. CRC press, 2017.
  55. Bayesian prediction and adaptive sampling algorithms for mobile sensor networks. In Proceedings of the 2011 American Control Conference, pages 4195–4200. IEEE, 2011.
  56. Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science & Business Media, 2006.

Summary

We haven't generated a summary for this paper yet.