Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real, fake and synthetic faces -- does the coin have three sides? (2404.01878v1)

Published 2 Apr 2024 in cs.CV and cs.AI

Abstract: With the ever-growing power of generative artificial intelligence, deepfake and artificially generated (synthetic) media have continued to spread online, which creates various ethical and moral concerns regarding their usage. To tackle this, we thus present a novel exploration of the trends and patterns observed in real, deepfake and synthetic facial images. The proposed analysis is done in two parts: firstly, we incorporate eight deep learning models and analyze their performances in distinguishing between the three classes of images. Next, we look to further delve into the similarities and differences between these three sets of images by investigating their image properties both in the context of the entire image as well as in the context of specific regions within the image. ANOVA test was also performed and provided further clarity amongst the patterns associated between the images of the three classes. From our findings, we observe that the investigated deeplearning models found it easier to detect synthetic facial images, with the ViT Patch-16 model performing best on this task with a class-averaged sensitivity, specificity, precision, and accuracy of 97.37%, 98.69%, 97.48%, and 98.25%, respectively. This observation was supported by further analysis of various image properties. We saw noticeable differences across the three category of images. This analysis can help us build better algorithms for facial image generation, and also shows that synthetic, deepfake and real face images are indeed three different classes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Networks,” Jun. 2014, arXiv:1406.2661 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1406.2661
  2. R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia, “DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection,” Jun. 2020, arXiv:2001.00179 [cs]. [Online]. Available: http://arxiv.org/abs/2001.00179
  3. M. Masood, M. Nawaz, K. M. Malik, A. Javed, and A. Irtaza, “Deepfakes Generation and Detection: State-of-the-art, open challenges, countermeasures, and way forward,” Nov. 2021, arXiv:2103.00484 [cs, eess]. [Online]. Available: http://arxiv.org/abs/2103.00484
  4. J. W. Seow, M. K. Lim, R. C. Phan, and J. K. Liu, “A comprehensive overview of deepfake: Generation, detection, datasets, and opportunities,” Neurocomputing, vol. 513, pp. 351–371, 2022.
  5. M. Ivanovska and V. Struc, “On the vulnerability of deepfake detectors to attacks generated by denoising diffusion models,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) Workshops, January 2024, pp. 1051–1060.
  6. T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo, L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman, C. Ng, R. Wang, and A. Ramesh, “Video generation models as world simulators,” 2024. [Online]. Available: https://openai.com/research/video-generation-models-as-world-simulators
  7. W. Xia, Y. Yang, J.-H. Xue, and B. Wu, “TediGAN: Text-Guided Diverse Face Image Generation and Manipulation,” Mar. 2021, arXiv:2012.03308 [cs]. [Online]. Available: http://arxiv.org/abs/2012.03308
  8. U. Kosarkar, G. Sarkarkar, and S. Gedam, “Revealing and classification of deepfakes video’s images using a customize convolution neural network model,” Procedia Computer Science, vol. 218, pp. 2636–2652, 2023, international Conference on Machine Learning and Data Engineering. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050923002375
  9. Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation,” Sep. 2018, arXiv:1711.09020 [cs]. [Online]. Available: http://arxiv.org/abs/1711.09020
  10. M. Li, W. Zuo, and D. Zhang, “Deep Identity-aware Transfer of Facial Attributes,” Dec. 2018, arXiv:1610.05586 [cs]. [Online]. Available: http://arxiv.org/abs/1610.05586
  11. G. Perarnau, J. van de Weijer, B. Raducanu, and J. M. Álvarez, “Invertible Conditional GANs for image editing,” Nov. 2016, arXiv:1611.06355 [cs]. [Online]. Available: http://arxiv.org/abs/1611.06355
  12. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV).   Venice: IEEE, Oct. 2017, pp. 2242–2251. [Online]. Available: http://ieeexplore.ieee.org/document/8237506/
  13. Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “AttGAN: Facial Attribute Editing by Only Changing What You Want,” Jul. 2018, arXiv:1711.10678 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1711.10678
  14. A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” Feb. 2016, arXiv:1512.09300 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1512.09300
  15. G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, and M. Ranzato, “Fader Networks: Manipulating Images by Sliding Attributes,” Jan. 2018, arXiv:1706.00409 [cs]. [Online]. Available: http://arxiv.org/abs/1706.00409
  16. W. Shen and R. Liu, “Learning Residual Images for Face Attribute Manipulation,” Apr. 2017, arXiv:1612.05363 [cs]. [Online]. Available: http://arxiv.org/abs/1612.05363
  17. A. V and P. T. Joy, “Deepfake Detection Using XceptionNet,” in 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), Nov. 2023, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/10363477
  18. A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner, “FaceForensics++: Learning to Detect Manipulated Facial Images,” Aug. 2019, arXiv:1901.08971 [cs]. [Online]. Available: http://arxiv.org/abs/1901.08971
  19. H. Ilyas, A. Javed, M. M. Aljasem, and M. Alhababi, “Fused Swish-ReLU Efficient-Net Model for Deepfakes Detection,” in 2023 9th International Conference on Automation, Robotics and Applications (ICARA).   Abu Dhabi, United Arab Emirates: IEEE, Feb. 2023, pp. 368–372. [Online]. Available: https://ieeexplore.ieee.org/document/10125801/
  20. B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer, “The Deepfake Detection Challenge (DFDC) Preview Dataset,” Oct. 2019, arXiv:1910.08854 [cs]. [Online]. Available: http://arxiv.org/abs/1910.08854
  21. L. Guarnera, O. Giudice, and S. Battiato, “DeepFake Detection by Analyzing Convolutional Traces,” Apr. 2020, arXiv:2004.10448 [cs]. [Online]. Available: http://arxiv.org/abs/2004.10448
  22. W. Cho, S. Choi, D. K. Park, I. Shin, and J. Choo, “Image-to-Image Translation via Group-wise Deep Whitening-and-Coloring Transformation,” Jun. 2019, arXiv:1812.09912 [cs]. [Online]. Available: http://arxiv.org/abs/1812.09912
  23. T. Karras, S. Laine, and T. Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks,” Mar. 2019, arXiv:1812.04948 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1812.04948
  24. T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and Improving the Image Quality of StyleGAN,” Mar. 2020, arXiv:1912.04958 [cs, eess, stat]. [Online]. Available: http://arxiv.org/abs/1912.04958
  25. Z. Cai, S. Ghosh, K. Stefanov, A. Dhall, J. Cai, H. Rezatofighi, R. Haffari, and M. Hayat, “MARLIN: Masked Autoencoder for facial video Representation LearnINg,” Mar. 2023, arXiv:2211.06627 [cs]. [Online]. Available: http://arxiv.org/abs/2211.06627
  26. S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative Adversarial Text to Image Synthesis,” Jun. 2016, arXiv:1605.05396 [cs]. [Online]. Available: http://arxiv.org/abs/1605.05396
  27. H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas, “Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks,” 2017.
  28. S. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee, “Learning what and where to draw,” 2016.
  29. T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “Attngan: Fine-grained text to image generation with attentional generative adversarial networks,” 2017.
  30. B. Li, X. Qi, T. Lukasiewicz, and P. H. S. Torr, “Controllable text-to-image generation,” 2019.
  31. M. Tao, H. Tang, F. Wu, X.-Y. Jing, B.-K. Bao, and C. Xu, “Df-gan: A simple and effective baseline for text-to-image synthesis,” 2022.
  32. M. Zhu, P. Pan, W. Chen, and Y. Yang, “Dm-gan: Dynamic memory generative adversarial networks for text-to-image synthesis,” 2019.
  33. N. Waqas, S. I. Safie, K. A. Kadir, S. Khan, and M. H. Kaka Khel, “DEEPFAKE Image Synthesis for Data Augmentation,” IEEE Access, vol. 10, pp. 80 847–80 857, 2022. [Online]. Available: https://ieeexplore.ieee.org/document/9839427/
  34. D. Liang, R. Wang, X. Tian, and C. Zou, “PCGAN: Partition-Controlled Human Image Generation,” Nov. 2018, arXiv:1811.09928 [cs]. [Online]. Available: http://arxiv.org/abs/1811.09928
  35. J. Liang, X. Yang, H. Li, Y. Wang, M. T. Van, H. Dou, C. Chen, J. Fang, X. Liang, Z. Mai, G. Zhu, Z. Chen, and D. Ni, “Synthesis and Edition of Ultrasound Images via Sketch Guided Progressive Growing GANs,” Apr. 2020, arXiv:2004.00226 [cs, eess]. [Online]. Available: http://arxiv.org/abs/2004.00226
  36. R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang, and Y. Liu, “FakeSpotter: A Simple yet Robust Baseline for Spotting AI-Synthesized Fake Faces,” Jul. 2020, arXiv:1909.06122 [cs]. [Online]. Available: http://arxiv.org/abs/1909.06122
  37. L. Lin, N. Gupta, Y. Zhang, H. Ren, C.-H. Liu, F. Ding, X. Wang, X. Li, L. Verdoliva, and S. Hu, “Detecting Multimedia Generated by Large AI Models: A Survey,” Feb. 2024, arXiv:2402.00045 [cs]. [Online]. Available: http://arxiv.org/abs/2402.00045
  38. D. Beniaguev, “Synthetic faces high quality (sfhq) part 1,” 2022. [Online]. Available: https://www.kaggle.com/dsv/4737549
  39. XHLULU, “140k real and fake faces,” 2020. [Online]. Available: https://www.kaggle.com/datasets/xhlulu/140k-real-and-fake-faces
  40. B. Tunguz, “1 million fake faces - 1,” 2020. [Online]. Available: https://www.kaggle.com/datasets/tunguz/1-million-fake-faces/data
  41. G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023. [Online]. Available: https://github.com/ultralytics/ultralytics
  42. T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in context,” 2015.
  43. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” Jun. 2021, arXiv:2010.11929 [cs]. [Online]. Available: http://arxiv.org/abs/2010.11929
  44. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely Connected Convolutional Networks,” Jan. 2018, arXiv:1608.06993 [cs]. [Online]. Available: http://arxiv.org/abs/1608.06993
  45. K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” Dec. 2015, arXiv:1512.03385 [cs]. [Online]. Available: http://arxiv.org/abs/1512.03385
  46. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Dec. 2015, arXiv:1512.00567 [cs]. [Online]. Available: http://arxiv.org/abs/1512.00567
  47. M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” Sep. 2020, arXiv:1905.11946 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1905.11946
  48. K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” Apr. 2015, arXiv:1409.1556 [cs]. [Online]. Available: http://arxiv.org/abs/1409.1556
  49. N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,” Jul. 2018, arXiv:1807.11164 [cs]. [Online]. Available: http://arxiv.org/abs/1807.11164
  50. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Mar. 2019, arXiv:1801.04381 [cs]. [Online]. Available: http://arxiv.org/abs/1801.04381
  51. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp. 248–255, iSSN: 1063-6919. [Online]. Available: https://ieeexplore.ieee.org/document/5206848
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Shahzeb Naeem (2 papers)
  2. Ramzi Al-Sharawi (1 paper)
  3. Muhammad Riyyan Khan (2 papers)
  4. Usman Tariq (7 papers)
  5. Abhinav Dhall (55 papers)
  6. Hasan Al-Nashash (3 papers)