Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curvature conditions, Liouville-type theorems and Harnack inequalities for a nonlinear parabolic equation on smooth metric measure spaces (2404.01749v1)

Published 2 Apr 2024 in math.AP

Abstract: In this paper we prove gradient estimates of both elliptic and parabolic types, specifically, of Souplet-Zhang, Hamilton and Li-Yau types for positive smooth solutions to a class of nonlinear parabolic equations involving the Witten or drifting Laplacian on smooth metric measure spaces. These estimates are established under various curvature conditions and lower bounds on the generalised Bakry-\'Emery Ricci tensor and find utility in proving elliptic and parabolic Harnack-type inequalities as well as general elliptic and parabolic Liouville-type and other global constancy results. Several applications and consequences are presented and discussed.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com