InsightLens: Augmenting LLM-Powered Data Analysis with Interactive Insight Management and Navigation (2404.01644v2)
Abstract: The proliferation of LLMs has revolutionized the capabilities of natural language interfaces (NLIs) for data analysis. LLMs can perform multi-step and complex reasoning to generate data insights based on users' analytic intents. However, these insights often entangle with an abundance of contexts in analytic conversations such as code, visualizations, and natural language explanations. This hinders efficient recording, organization, and navigation of insights within the current chat-based LLM interfaces. In this paper, we first conduct a formative study with eight data analysts to understand their general workflow and pain points of insight management during LLM-powered data analysis. Accordingly, we introduce InsightLens, an interactive system to overcome such challenges. Built upon an LLM-agent-based framework that automates insight recording and organization along with the analysis process, InsightLens visualizes the complex conversational contexts from multiple aspects to facilitate insight navigation. A user study with twelve data analysts demonstrates the effectiveness of InsightLens, showing that it significantly reduces users' manual and cognitive effort without disrupting their conversational data analysis workflow, leading to a more efficient analysis experience.
- Gpt-4 technical report. arXiv, 2023. doi: 10 . 48550/ARXIV . 2303 . 08774
- A comparative survey of recent natural language interfaces for databases. VLDB J., 28:793–819, 2019. doi: 10 . 1007/S00778-019-00567-8
- Spellburst: A node-based interface for exploratory creative coding with natural language prompts. In Proc. UIST. ACM, New York, NY, USA, 2023. doi: 10 . 1145/3586183 . 3606719
- Explaining queries over web tables to non-experts. In ICDE, pp. 1570–1573, 2019. doi: 10 . 1109/ICDE . 2019 . 00144
- Understanding how in-visualization provenance can support trade-off analysis. IEEE Trans. Vis. Comput. Graph., 29(9):3758–3774, 2023. doi: 10 . 1109/TVCG . 2022 . 3171074
- Extending context window of large language models via positional interpolation. arXiv, 2023. doi: 10 . 48550/ARXIV . 2306 . 15595
- Toward effective insight management in visual analytics systems. In PacificVis, pp. 49–56, 2009. doi: 10 . 1109/PACIFICVIS . 2009 . 4906837
- Z. Chen and H. Xia. Crossdata: Leveraging text-data connections for authoring data documents. In Proc. CHI. ACM, New York, NY, USA, 2022. doi: 10 . 1145/3491102 . 3517485
- Binding language models in symbolic languages. In ICLR, 2023. doi: 10 . 48550/ARXIV . 2210 . 02875
- Can large language models be an alternative to human evaluations? In Proc. ACL, pp. 15607–15631. ACL, Toronto, Canada, July 2023. doi: 10 . 18653/v1/2023 . acl-long . 870
- Conversational challenges in ai-powered data science: Obstacles, needs, and design opportunities. arXiv, 2023. doi: 10 . 48550/ARXIV . 2310 . 16164
- A multi-modal natural language interface to an information visualization environment. International Journal of Speech Technology, 4:297–314, 2001. doi: 10 . 1023/A%3A1011368926479
- Quickinsights: Quick and automatic discovery of insights from multi-dimensional data. In Proc. SIGMOD, p. 317–332. ACM, New York, NY, USA, 2019. doi: 10 . 1145/3299869 . 3314037
- Asknow: A framework for natural language query formalization in sparql. In Proc. International Conference on The Semantic Web, p. 300–316. Springer, Berlin, Heidelberg, 2016. doi: 10 . 1007/978-3-319-34129-3_19
- Dead or alive: Continuous data profiling for interactive data science. IEEE Trans. Vis. Comput. Graph., 30(1):197–207, 2024. doi: 10 . 1109/TVCG . 2023 . 3327367
- Xnli: Explaining and diagnosing nli-based visual data analysis. IEEE Trans. Vis. Comput. Graph., pp. 1–14, 2023. doi: 10 . 1109/TVCG . 2023 . 3240003
- Promptmagician: Interactive prompt engineering for text-to-image creation. IEEE Trans. Vis. Comput. Graph., 30(1):295–305, 2024. doi: 10 . 1109/TVCG . 2023 . 3327168
- Datatone: Managing ambiguity in natural language interfaces for data visualization. In Proc. UIST, p. 489–500. ACM, New York, NY, USA, 2015. doi: 10 . 1145/2807442 . 2807478
- D. Gotz and M. X. Zhou. Characterizing users’ visual analytic activity for insight provenance. In IEEE VAST, pp. 123–130, 2008. doi: 10 . 1109/VAST . 2008 . 4677365
- How do data analysts respond to ai assistance? a wizard-of-oz study. arXiv, 2023. doi: 10 . 48550/ARXIV . 2309 . 10108
- How do analysts understand and verify ai-assisted data analyses? arXiv, 2023. doi: 10 . 48550/ARXIV . 2309 . 10947
- Towards complex text-to-SQL in cross-domain database with intermediate representation. In Proc. ACL, pp. 4524–4535. ACL, Florence, Italy, July 2019. doi: 10 . 18653/v1/P19-1444
- M. Hearst and M. Tory. Would you like a chart with that? incorporating visualizations into conversational interfaces. In IEEE VIS, pp. 1–5, 2019. doi: 10 . 1109/VISUAL . 2019 . 8933766
- M.-H. Hong and A. Crisan. Conversational ai threads for visualizing multidimensional datasets. arXiv, 2023. doi: 10 . 48550/ARXIV . 2311 . 05590
- Applying pragmatics principles for interaction with visual analytics. IEEE Trans. Vis. Comput. Graph., 24(1):309–318, 2018. doi: 10 . 1109/TVCG . 2017 . 2744684
- The hallmark effect: Supporting provenance and transparent use of large language models in writing with interactive visualization. arXiv, 2024. doi: 10 . 48550/ARXIV . 2311 . 13057
- Memory sandbox: Transparent and interactive memory management for conversational agents. In Proc. UIST. ACM, New York, NY, USA, 2023. doi: 10 . 1145/3586182 . 3615796
- Neural approaches for natural language interfaces to databases: A survey. In Proc. COLING, pp. 381–395. International Committee on Computational Linguistics, Barcelona, Spain (Online), Dec. 2020. doi: 10 . 18653/v1/2020 . coling-main . 34
- Graphologue: Exploring large language model responses with interactive diagrams. In Proc. UIST. ACM, New York, NY, USA, 2023. doi: 10 . 1145/3586183 . 3606737
- A. Kamath and R. Das. A survey on semantic parsing. arXiv, 2019. doi: 10 . 48550/ARXIV . 1812 . 00978
- Towards effective foraging by data scientists to find past analysis choices. In Proc. CHI, p. 1–13. ACM, New York, NY, USA, 2019. doi: 10 . 1145/3290605 . 3300322
- Prediction of users’ learning curves for adaptation while using an information visualization. In Proc. IUI, p. 357–368. ACM, New York, NY, USA, 2015. doi: 10 . 1145/2678025 . 2701376
- Exploring the "double-edged sword" effect of auto-insight recommendation in exploratory data analysis. In Proc. IUI Workshop, CEUR Workshop Proceedings, 2021.
- C5: Towards better conversation comprehension and contextual continuity for chatgpt. arXiv, 2023. doi: 10 . 48550/ARXIV . 2309 . 10108
- Inksight: Leveraging sketch interaction for documenting chart findings in computational notebooks. IEEE Trans. Vis. Comput. Graph., 30(1):944–954, 2024. doi: 10 . 1109/TVCG . 2023 . 3327170
- JarviX: A LLM no code platform for tabular data analysis and optimization. In Proc. EMNLP, pp. 622–630. ACL, Singapore, Dec. 2023. doi: 10 . 18653/v1/2023 . emnlp-industry . 59
- Sprout: Authoring programming tutorials with interactive visualization of large language model generation process. arXiv, 2023. doi: 10 . 48550/ARXIV . 2312 . 01801
- Agentlens: Visual analysis for agent behaviors in llm-based autonomous systems. arXiv, 2024. doi: 10 . 48550/ARXIV . 2402 . 08995
- Details-first, show context, overview last: Supporting exploration of viscous fingers in large-scale ensemble simulations. IEEE Trans. Vis. Comput. Graph., 25(1):1225–1235, 2019. doi: 10 . 1109/TVCG . 2018 . 2864849
- InsightPilot: An LLM-empowered automated data exploration system. In Proc. EMNLP, pp. 346–352. ACL, Singapore, Dec. 2023. doi: 10 . 18653/v1/2023 . emnlp-demo . 31
- Analytic provenance in practice: The role of provenance in real-world visualization and data analysis environments. IEEE Computer Graphics and Applications, 39(6):30–45, 2019. doi: 10 . 1109/MCG . 2019 . 2933419
- On the design of ai-powered code assistants for notebooks. In Proc. CHI. ACM, New York, NY, USA, 2023. doi: 10 . 1145/3544548 . 3580940
- Lumos: Increasing awareness of analytic behavior during visual data analysis. IEEE Trans. Vis. Comput. Graph., 28(1):1009–1018, 2022. doi: 10 . 1109/TVCG . 2021 . 3114827
- Diy: Assessing the correctness of natural language to sql systems. In Proc. IUI, p. 597–607. ACM, New York, NY, USA, 2021. doi: 10 . 1145/3397481 . 3450667
- Nl4dv: A toolkit for generating analytic specifications for data visualization from natural language queries. IEEE Trans. Vis. Comput. Graph., 27(2):369–379, 2021. doi: 10 . 1109/TVCG . 2020 . 3030378
- Sensepath: Understanding the sensemaking process through analytic provenance. IEEE Trans. Vis. Comput. Graph., 22(1):41–50, 2016. doi: 10 . 1109/TVCG . 2015 . 2467611
- OpenAI. Chatgpt plugins. https://openai.com/blog/chatgpt-plugins#code-interpreter, 2024.
- Towards efficient visual simplification of computational graphs in deep neural networks. IEEE Trans. Vis. Comput. Graph., pp. 1–14, 2022. doi: 10 . 1109/TVCG . 2022 . 3230832
- Datamations: Animated explanations of data analysis pipelines. In Proc. CHI. ACM, New York, NY, USA, 2021. doi: 10 . 1145/3411764 . 3445063
- Characterizing provenance in visualization and data analysis: An organizational framework of provenance types and purposes. IEEE Trans. Vis. Comput. Graph., 22(1):31–40, 2016. doi: 10 . 1109/TVCG . 2015 . 2467551
- N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proc. EMNLP-IJCNLP, pp. 3982–3992. ACL, Hong Kong, China, Nov. 2019. doi: 10 . 18653/v1/D19-1410
- Athena: an ontology-driven system for natural language querying over relational data stores. Proc. VLDB Endow., 9(12):1209–1220, aug 2016. doi: 10 . 14778/2994509 . 2994536
- Eviza: A natural language interface for visual analysis. In Proc. UIST, p. 365–377. ACM, New York, NY, USA, 2016. doi: 10 . 1145/2984511 . 2984588
- V. Setlur and M. Tory. How do you converse with an analytical chatbot? revisiting gricean maxims for designing analytical conversational behavior. In Proc. CHI. ACM, New York, NY, USA, 2022. doi: 10 . 1145/3491102 . 3501972
- Inferencing underspecified natural language utterances in visual analysis. In Proc. IUI, p. 40–51. ACM, New York, NY, USA, 2019. doi: 10 . 1145/3301275 . 3302270
- Towards natural language interfaces for data visualization: A survey. IEEE Trans. Vis. Comput. Graph., 29(6):3121–3144, 2023. doi: 10 . 1109/TVCG . 2022 . 3148007
- Augmenting visualizations with interactive data facts to facilitate interpretation and communication. IEEE Trans. Vis. Comput. Graph., 25(1):672–681, 2019. doi: 10 . 1109/TVCG . 2018 . 2865145
- Collecting and characterizing natural language utterances for specifying data visualizations. In Proc. CHI. ACM, New York, NY, USA, 2021. doi: 10 . 1145/3411764 . 3445400
- A. Srinivasan and V. Setlur. Snowy: Recommending utterances for conversational visual analysis. In Proc. UIST, p. 864–880. ACM, New York, NY, USA, 2021. doi: 10 . 1145/3472749 . 3474792
- A. Srinivasan and J. Stasko. Orko: Facilitating multimodal interaction for visual exploration and analysis of networks. IEEE Trans. Vis. Comput. Graph., 24(1):511–521, 2018. doi: 10 . 1109/TVCG . 2017 . 2745219
- Bridging the gulf of envisioning: Cognitive design challenges in llm interfaces. arXiv, 2023. doi: 10 . 48550/ARXIV . 2309 . 14459
- Structured generation and exploration of design space with large language models for human-ai co-creation. arXiv, 2023. doi: 10 . 48550/ARXIV . 2310 . 12953
- Sensecape: Enabling multilevel exploration and sensemaking with large language models. In Proc. UIST. ACM, New York, NY, USA, 2023. doi: 10 . 1145/3586183 . 3606756
- M. Tory and V. Setlur. Do what i mean, not what i say! design considerations for supporting intent and context in analytical conversation. In IEEE VAST, pp. 93–103, 2019. doi: 10 . 1109/VAST47406 . 2019 . 8986918
- Llama: Open and efficient foundation language models. arXiv, 2023. doi: 10 . 48550/ARXIV . 2302 . 13971
- K. Urgo and J. Arguello. Learning assessments in search-as-learning: A survey of prior work and opportunities for future research. Information Processing & Management, 59(2):102821, 2022. doi: 10 . 1016/j . ipm . 2021 . 102821
- RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In Proc. ACL, pp. 7567–7578. ACL, Online, July 2020. doi: 10 . 18653/v1/2020 . acl-main . 677
- Interactive data analysis with next-step natural language query recommendation. arXiv, 2022. doi: 10 . 48550/ARXIV . 2201 . 04868
- Datashot: Automatic generation of fact sheets from tabular data. IEEE Trans. Vis. Comput. Graph., 26(1):895–905, 2020. doi: 10 . 1109/TVCG . 2019 . 2934398
- Structure-aware fisheye views for efficient large graph exploration. IEEE Trans. Vis. Comput. Graph., 25(1):566–575, 2019. doi: 10 . 1109/TVCG . 2018 . 2864911
- StickyLand: Breaking the Linear Presentation of Computational Notebooks. In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems. ACM, 2022. doi: 10 . 1145/3491101 . 3519653
- UnifiedSKG: Unifying and multi-tasking structured knowledge grounding with text-to-text language models. In Proc. EMNLP, pp. 602–631. ACL, Abu Dhabi, United Arab Emirates, Dec. 2022. doi: 10 . 18653/v1/2022 . emnlp-main . 39
- Openagents: An open platform for language agents in the wild. arXiv, 2023. doi: 10 . 48550/ARXIV . 2310 . 10634
- React: Synergizing reasoning and acting in language models. In ICLR, 2023. doi: 10 . 48550/ARXIV . 2210 . 03629
- Wordcraft: Story writing with large language models. In Proc. IUI, p. 841–852. ACM, New York, NY, USA, 2022. doi: 10 . 1145/3490099 . 3511105
- Data-copilot: Bridging billions of data and humans with autonomous workflow. arXiv, 2023. doi: 10 . 48550/ARXIV . 2306 . 07209
- Siren’s song in the ai ocean: A survey on hallucination in large language models. arXiv, 2023. doi: 10 . 48550/ARXIV . 2309 . 01219
- Natural language question/answering: Let users talk with the knowledge graph. In Proc. CIKM, p. 217–226. ACM, New York, NY, USA, 2017. doi: 10 . 1145/3132847 . 3132977
- TaCube: Pre-computing data cubes for answering numerical-reasoning questions over tabular data. In Proc. EMNLP, pp. 2278–2291. ACL, Abu Dhabi, United Arab Emirates, Dec. 2022. doi: 10 . 18653/v1/2022 . emnlp-main . 145
- Modeling and leveraging analytic focus during exploratory visual analysis. In Proc. CHI. ACM, New York, NY, USA, 2021. doi: 10 . 1145/3411764 . 3445674
- Foresight: Rapid data exploration through guideposts. arXiv, 2017. doi: 10 . 48550/ARXIV . 1709 . 10513
- Luoxuan Weng (6 papers)
- Xingbo Wang (33 papers)
- Junyu Lu (31 papers)
- Yingchaojie Feng (11 papers)
- Yihan Liu (24 papers)
- Wei Chen (1288 papers)
- Haozhe Feng (7 papers)
- Danqing Huang (11 papers)