Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A second-order correction method for loosely coupled discretizations applied to parabolic-parabolic interface problems (2404.01599v1)

Published 2 Apr 2024 in math.NA and cs.NA

Abstract: We consider a parabolic-parabolic interface problem and construct a loosely coupled prediction-correction scheme based on the Robin-Robin splitting method analyzed in [J. Numer. Math., 31(1):59--77, 2023]. We show that the errors of the correction step converge at $\mathcal O((\Delta t)2)$, under suitable convergence rate assumptions on the discrete time derivative of the prediction step, where $\Delta t$ stands for the time-step length. Numerical results are shown to support our analysis and the assumptions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. A defect-deferred correction method for fluid-fluid interaction. SIAM Journal on Numerical Analysis, 56(4):2484–2512, 2018.
  2. The FEniCS project version 1.5. Archive of numerical software, 3(100), 2015.
  3. Fluid–structure partitioned procedures based on Robin transmission conditions. Journal of Computational Physics, 227(14):7027–7051, 2008.
  4. F. Ballarin and G. Rozza. https://multiphenics.github.io/, 2016.
  5. An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids. J. Comput. Phys., 269:108–137, 2014.
  6. M. Beneš. Convergence and stability analysis of heterogeneous time step coupling schemes for parabolic problems. Appl. Numer. Math., 121:198–222, 2017.
  7. Multi-time-step domain decomposition method with non-matching grids for parabolic problems. Appl. Math. Comput., 267:571–582, 2015.
  8. K. Böhmer. Discrete Newton methods and iterated defect corrections. Numer. Math., 37(2):167–192, 1981.
  9. The defect correction approach. Defect Correction Methods: Theory and Applications, pages 1–32, 1984.
  10. A stable loosely-coupled scheme for cardiac electro-fluid-structure interaction. Journal of Computational Physics, 490:112326, 2023.
  11. Refactorization of Cauchy’s method: A second-order partitioned method for fluid–thick structure interaction problems. Journal of Mathematical Fluid Mechanics, 23(3):1–25, 2021.
  12. A modular, operator-splitting scheme for fluid-structure interaction problems with thick structures. Internat. J. Numer. Methods Fluids, 74(8):577–604, 2014.
  13. M. Bukač. An extension of explicit coupling for fluid–structure interaction problems. Mathematics, 9(15), 2021.
  14. Loosely coupled, non-iterative time-splitting scheme based on Robin–Robin coupling: Unified analysis for parabolic/parabolic and parabolic/hyperbolic problems. Journal of Numerical Mathematics, 31(1):59–77, 2023.
  15. Estimates of discrete time derivatives for the parabolic-parabolic Robin-Robin coupling methods. Preprint, 2024.
  16. Fully discrete loosely coupled Robin-Robin scheme for incompressible fluid–structure interaction: stability and error analysis. Numerische Mathematik, 151(4):807–840, 2022.
  17. Robin-Robin loose coupling for incompressible fluid-structure interaction: non-linear setting and nearly-optimal error analysis. 2023. https://inria.hal.science/hal-04258861.
  18. Stability and error analysis of a splitting method using Robin–Robin coupling applied to a fluid–structure interaction problem. Numerical Methods for Partial Differential Equations, 38(5):1396–1406, 2022.
  19. E. Burman and M. A. Fernández. Stabilization of explicit coupling in fluid–structure interaction involving fluid incompressibility. Computer Methods in Applied Mechanics and Engineering, 198(5-8):766–784, 2009.
  20. E. Burman and M. A. Fernández. Explicit strategies for incompressible fluid-structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling. International Journal for Numerical Methods in Engineering, 97(10):739–758, 2014.
  21. C. Canuto and A. Lo Giudice. A multi-timestep Robin-Robin domain decomposition method for time dependent advection-diffusion problems. Appl. Math. Comput., 363:124596, 14, 2019.
  22. A fluid-fluid interaction method using decoupled subproblems and differing time steps. Numer. Methods Partial Differential Equations, 28(4):1283–1308, 2012.
  23. Partitioned time stepping for a parabolic two domain problem. SIAM Journal on Numerical Analysis, 47(5):3526–3549, 2009.
  24. Decoupled time stepping methods for fluid-fluid interaction. SIAM J. Numer. Anal., 50(3):1297–1319, 2012.
  25. R. Durst. Recent Advances in Splitting Methods Based on Robin-Robin Coupling Conditions. PhD thesis, Brown University, 2022.
  26. M. Fernández and J. Mullaert. Convergence and error analysis for a class of splitting schemes in incompressible fluid-structure interaction. IMA J. Numer. Anal., 36(4):1748–1782, 2016.
  27. G. Gigante and C. Vergara. On the choice of interface parameters in Robin–Robin loosely coupled schemes for fluid–structure interaction. Fluids, 6(6), 2021.
  28. G. Gigante and C. Vergara. On the stability of a loosely-coupled scheme based on a Robin interface condition for fluid-structure interaction. Comput. Math. Appl., 96:109–119, 2021.
  29. An unconditionally energy stable finite element scheme for a nonlinear fluid-fluid interaction model. IMA J. Numer. Anal., 44(1):157–191, 2024.
  30. A stable added-mass partitioned (amp) algorithm for elastic solids and incompressible flow: Model problem analysis. SIAM Journal on Scientific Computing, 41(4):A2464–A2484, 2019.
  31. Interface flux recovery framework for constructing partitioned heterogeneous time-integration methods. Numer. Methods Partial Differential Equations, 39(5):3572–3593, 2023.
  32. H. J. Stetter. The defect correction principle and discretization methods. Numer. Math., 29(4):425–443, 1977/78.
  33. Stability analysis of interface conditions for ocean-atmosphere coupling. J. Sci. Comput., 84(3):Paper No. 44, 25, 2020.
  34. Error estimates of a decoupled algorithm for a fluid-fluid interaction problem. J. Comput. Appl. Math., 333:266–291, 2018.
  35. New approach to prove the stability of a decoupled algorithm for a fluid-fluid interaction problem. J. Comput. Appl. Math., 371:112695, 19, 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com