Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Digital Perceptual Technologies for Remote Perception and Analysis of Human Biomechanical Processes: A Contactless Approach for Workload and Joint Force Assessment (2404.01576v1)

Published 2 Apr 2024 in cs.CV and cs.HC

Abstract: This study presents an innovative computer vision framework designed to analyze human movements in industrial settings, aiming to enhance biomechanical analysis by integrating seamlessly with existing software. Through a combination of advanced imaging and modeling techniques, the framework allows for comprehensive scrutiny of human motion, providing valuable insights into kinematic patterns and kinetic data. Utilizing Convolutional Neural Networks (CNNs), Direct Linear Transform (DLT), and Long Short-Term Memory (LSTM) networks, the methodology accurately detects key body points, reconstructs 3D landmarks, and generates detailed 3D body meshes. Extensive evaluations across various movements validate the framework's effectiveness, demonstrating comparable results to traditional marker-based models with minor differences in joint angle estimations and precise estimations of weight and height. Statistical analyses consistently support the framework's reliability, with joint angle estimations showing less than a 5-degree difference for hip flexion, elbow flexion, and knee angle methods. Additionally, weight estimation exhibits an average error of less than 6 % for weight and less than 2 % for height when compared to ground-truth values from 10 subjects. The integration of the Biomech-57 landmark skeleton template further enhances the robustness and reinforces the framework's credibility. This framework shows significant promise for meticulous biomechanical analysis in industrial contexts, eliminating the need for cumbersome markers and extending its utility to diverse research domains, including the study of specific exoskeleton devices' impact on facilitating the prompt return of injured workers to their tasks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. M. A. A. Ardha, C. B. Yang, N. Nurhasan, D. C. Kartiko, B. F. T. Kuntjoro, K. O. Ristanto, A. Wijaya, K. R. Adhe, K. P. Putra, F. A. Irawan, R. P. Nevangga, N. S. Sasmita, and A. Z. Rizki, “Biomechanics analysis of elementary school students’ fundamental movement skill (fms),” Proceedings of the International Joint Conference on Arts and Humanities 2021 (IJCAH 2021), 2021.
  2. S. E. A. N. GALLAGHER, C. A. HAMRICK, L. O. V. E. ARNOLD C., and W. S. MARRAS, “Dynamic biomechanical modelling of symmetric and asymmetric lifting tasks in restricted postures,” Ergonomics, vol. 37, p. 1289–1310, 1994 1994.
  3. T. von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-Moll, “Sparse inertial poser: Automatic 3d human pose estimation from sparse imus,” Comput. Graph. Forum, vol. 36, p. 349–360, 2017 2017.
  4. S. H. Shabani, S. Zakeri, A. H. Salmanian, J. Amani, A. A. Mehrizi, G. Snounou, F. Nosten, C. Andolina, Y. Mourtazavi, and N. D. Djadid, “Biological, immunological and functional properties of two novel multi-variant chimeric recombinant proteins of csp antigens for vaccine development against plasmodium vivax infection,” Molecular Immunology, vol. 90, p. 158–171, 2017 2017.
  5. D. Egeonu and B. Jia, “Evaluating the performance of passive trunk exoskeleton in injured worker’s recovery and early return to work,” Examines in Physical Medicine and Rehabilitation, vol. 4, 2023 2023.
  6. M. Viceconti, D. Testi, F. Taddei, S. Martelli, G. J. Clapworthy, and S. Van Sint Jan, “Biomechanics modeling of the musculoskeletal apparatus: Status and key issues,” Proceedings of the IEEE, vol. 94, pp. 725–739, 2006 2006.
  7. Y. Yu, H. Li, X. Yang, L. Kong, X. Luo, and A. Y. L. Wong, “An automatic and non-invasive physical fatigue assessment method for construction workers,” Automation in Construction, vol. 103, p. 1–12, 2019 2019.
  8. Y. Yu, X. Yang, H. Li, X. Luo, H. Guo, and Q. Fang, “Joint-level vision-based ergonomic assessment tool for construction workers,” Journal of Construction Engineering and Management, vol. 145, 2019 2019.
  9. W. Xu, D. Xiang, G. Wang, R. Liao, M. Shao, and K. Li, “Multiview video-based 3-d pose estimation of patients in computer-assisted rehabilitation environment (caren),” IEEE Transactions on Human-Machine Systems, vol. 52, pp. 196–206, 2022.
  10. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, p. 85–117, 2015 2015.
  11. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, p. 436–444, 2015 2015.
  12. T. Huang, “Computer vision: Evolution and promise,” 19th CERN School of Computing, p. 21–25, 08 1996.
  13. W. Fang, P. E. D. Love, H. Luo, and L. Ding, “Computer vision for behaviour-based safety in construction: A review and future directions,” Advanced Engineering Informatics, vol. 43, p. 100980, 2020 2020.
  14. Y. Guo, Y. Liu, A. A. J. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, 2016.
  15. K. Demertzis, S. Demertzis, and L. Iliadis, “A selective survey review of computational intelligence applications in the primary subdomains of civil engineering specializations,” Applied Sciences, vol. 13, p. 3380, 2023 2023.
  16. I. Banerjee, Y. Ling, M. C. Chen, S. A. Hasan, C. P. Langlotz, N. Moradzadeh, B. Chapman, T. Amrhein, D. Mong, D. L. Rubin, O. Farri, and M. P. Lungren, “Comparative effectiveness of convolutional neural network (cnn) and recurrent neural network (rnn) architectures for radiology text report classification,” Artificial Intelligence in Medicine, vol. 97, p. 79–88, 2019 2019.
  17. Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “Openpose: Realtime multiperson 2d pose estimation using part affinity fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, 2019.
  18. A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, and M. Bethge, “Deeplabcut: Markerless pose estimation of user-defined body parts with deep learning,” Nature Neuroscience, vol. 21, 2018.
  19. K. Arai, J. Shimazoe, and M. Oda, “Method for hyperparameter tuning of image classification with pycaret,” International Journal of Advanced Computer Science and Applications, vol. 14, 2023.
  20. M. Usvyatsov, R. Ballester-Ripoll, and K. Schindler, “tntorch: Tensor network learning with pytorch,” arXiv, 2022.
  21. 2024. [Online]. Available: http://www.simi.com/en/products/movement-analysis/markerless-motion-capture.html
  22. S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen, “Opensim: Open-source software to create and analyze dynamic simulations of movement,” IEEE Transactions on Biomedical Engineering, vol. 54, p. 1940–1950, 2007 2007.
  23. U. Trinler, H. Schwameder, R. Baker, and N. Alexander, “Muscle force estimation in clinical gait analysis using anybody and opensim,” Journal of Biomechanics, vol. 86, p. 55–63, 2019 2019.
  24. D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli, “3D Human Pose Estimation in Video With Temporal Convolutions and Semi-Supervised Training,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   Long Beach, CA, USA: IEEE, Jun. 2019, pp. 7745–7754. [Online]. Available: https://ieeexplore.ieee.org/document/8954163/
  25. D. Pagnon, M. Domalain, and L. Reveret, “Pose2sim: An end-to-end workflow for 3d markerless sports kinematics—part 1: Robustness,” Sensors, vol. 21, p. 6530, 2021 2021.
  26. D. Egeonu and B. Jia, “A systematic literature review of computer vision-based biomechanical models for physical workload estimation,” Ergonomics, p. 1–24, 2024 2024.
  27. H. Wang, Z. Xie, L. Lu, L. Li, and X. Xu, “A computer-vision method to estimate joint angles and l5/s1 moments during lifting tasks through a single camera,” Journal of Biomechanics, vol. 129, p. 110860, 2021 2021.
  28. R. Mehrizi, X. Peng, D. N. Metaxas, X. Xu, S. Zhang, and K. Li, “Predicting 3d lower back joint load in lifting: A deep pose estimation approach,” IEEE Transactions on Human-Machine Systems, vol. 49, no. 1, pp. 85–94, Feb. 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8599065/
  29. X. Wang, Y. H. Hu, M.-L. J. Lu, and R. Radwin, “Load Asymmetry Angle Estimation Using Multiple-View Videos,” IEEE Transactions on Human-Machine Systems, vol. 51, no. 6, pp. 734–739, Dec. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9563051/
  30. “v3.1 | external optitrack documentation.” [Online]. Available: https://docs.optitrack.com/movement-sciences/movement-sciences-markersets/biomechanics-markersets
  31. B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on long short-term memory networks for time series prediction,” Procedia CIRP, vol. 99, p. 650–655, 2021.
  32. Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p. 7291–7299.
  33. F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J. Black, “Keep it smpl: Automatic estimation of 3d human pose and shape from a single image,” in Computer Vision – ECCV 2016, 2016, p. 561–578.
  34. S. Pujades, B. Mohler, A. Thaler, J. Tesch, N. Mahmood, N. Hesse, H. H. Bulthoff, and M. J. Black, “The virtual caliper: Rapid creation of metrically accurate avatars from 3d measurements,” IEEE Transactions on Visualization and Computer Graphics, vol. 25, p. 1887–1897, 2019 2019.
  35. S. Yan, J. Wirta, and J.-K. Kamarainen, “Silhouette body measurement benchmarks,” in 2020 25th International Conference on Pattern Recognition (ICPR).   IEEE, 2021 2021.
  36. S. Yan and J.-K. Kämäräinen, “Learning anthropometry from rendered humans,” arXiv, 2021.
  37. S. Yan, J. Wirta, and J.-K. Kämäräinen, “Anthropometric clothing measurements from 3d body scans,” Machine Vision and Applications, vol. 31, 2020 2020.
  38. R. I. Hartley and P. Sturm, “Triangulation,” Computer vision and image understanding, vol. 68, no. 2, pp. 146–157, 1997.
  39. D. Bradley and W. Heidrich, “Binocular camera calibration using rectification error,” in 2010 Canadian Conference on Computer and Robot Vision.   IEEE, 2010.
  40. N. Nakano, T. Sakura, K. Ueda, L. Omura, A. Kimura, Y. Iino, S. Fukashiro, and S. Yoshioka, “Evaluation of 3d markerless motion capture accuracy using openpose with multiple video cameras,” Frontiers in Sports and Active Living, vol. 2, 2020 2020.
  41. T. Hellsten, J. Karlsson, M. Shamsuzzaman, and G. Pulkkis, “The potential of computer vision-based marker-less human motion analysis for rehabilitation,” Rehabilitation Process and Outcome, vol. 10, p. 117957272110223, 2021 2021.
  42. I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction to opencv,” in 2012 Proceedings of the 35th International Convention MIPRO, 2012, pp. 1725–1730.
  43. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, 2000.
  44. S. Hwang, P. Agada, T. Kiemel, and J. J. Jeka, “Identification of the unstable human postural control system,” Frontiers in Systems Neuroscience, vol. 10, 2016 2016.
  45. R. M. Kanko, E. K. Laende, E. M. Davis, W. S. Selbie, and K. J. Deluzio, “Concurrent assessment of gait kinematics using marker-based and markerless motion capture,” Journal of Biomechanics, vol. 127, p. 110665, 2021 2021.
  46. J.-T. Zhang, A. C. Novak, B. Brouwer, and Q. Li, “Concurrent validation of xsens mvn measurement of lower limb joint angular kinematics,” Physiological Measurement, vol. 34, p. N63–N69, 2013 2013.
  47. K. Bartol, D. Bojanić, T. Petković, S. Peharec, and T. Pribanić, “Linear regression vs. deep learning: A simple yet effective baseline for human body measurement,” Sensors, vol. 22, p. 1885, 2022 2022.
  48. S. L. Colyer, M. Evans, D. P. Cosker, and A. I. T. Salo, “A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system,” Sports Medicine - Open, vol. 4, 2018 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets