Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating hyperbolic lattices by cubulations (2404.01511v1)

Published 1 Apr 2024 in math.GR and math.GT

Abstract: We show that an isometric action of a torsion-free uniform lattice $\Gamma$ on hyperbolic space $\mathbb{H}n$ can be metrically approximated by geometric actions of $\Gamma$ on $\mathrm{CAT}(0)$ cube complexes, provided that either $n$ is at most three, or the lattice is arithmetic of simplest type. This solves a conjecture of Futer and Wise. Our main tool is the study of a space of co-geodesic currents, consisting of invariant Radon measures supported on codimension-1 hyperspheres in the Gromov boundary of $\mathbb{H}n$. By pairing co-geodesic currents and geodesic currents via an intersection number, we show that asymptotic convergence of geometric actions can be deduced from the convergence of their dual co-geodesic currents. For surface groups, our methods also imply approximation by cubulations for actions induced by non-positively curved Riemannian surfaces with singularities, Hitchin and maximal representations, and quasiFuchsian representations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. Ian Agol “The virtual Haken conjecture” With an appendix by Agol, Daniel Groves, and Jason Manning In Doc. Math. 18, 2013, pp. 1045–1087 DOI: 10.4171/DM/421
  2. Fernando Al Assal “Limits of asymptotically Fuchsian surfaces in a closed hyperbolic 3-manifold” ArXiv preprint, 2023 URL: https://arxiv.org/abs/2309.02164
  3. Michael T. Anderson “Complete minimal hypersurfaces in hyperbolic n𝑛nitalic_n-manifolds” In Comment. Math. Helv. 58.2, 1983, pp. 264–290 DOI: 10.1007/BF02564636
  4. “Arithmeticity, superrigidity, and totally geodesic submanifolds” In Ann. of Math. (2) 193.3, 2021, pp. 837–861 DOI: 10.4007/annals.2021.193.3.4
  5. Nicolas Bergeron, Frédéric Haglund and Daniel T. Wise “Hyperplane sections in arithmetic hyperbolic manifolds” In J. Lond. Math. Soc. (2) 83.2, 2011, pp. 431–448 DOI: 10.1112/jlms/jdq082
  6. Nicolas Bergeron and Daniel T. Wise “A boundary criterion for cubulation” In Amer. J. Math. 134.3, 2012, pp. 843–859 DOI: 10.1353/ajm.2012.0020
  7. “Finiteness Theorems for Gromov-Hyperbolic Spaces and Groups” ArXiv preprint, 2021 URL: https://arxiv.org/abs/2109.13025
  8. “Cross ratios and cubulations of hyperbolic groups” In Math. Ann. 384.3-4, 2022, pp. 1547–1592 DOI: 10.1007/s00208-021-02330-3
  9. “Cross-ratios on CAT⁢(0)CAT0{\rm CAT}(0)roman_CAT ( 0 ) cube complexes and marked length-spectrum rigidity” In J. Lond. Math. Soc. (2) 104.5, 2021, pp. 1973–2015 DOI: 10.1112/jlms.12489
  10. Patrick Billingsley “Convergence of probability measures”, Wiley Series in Probability and Statistics: Probability and Statistics John Wiley & Sons, Inc., New York, 1999, pp. x+277 DOI: 10.1002/9780470316962
  11. Christopher J. Bishop and Peter W. Jones “Hausdorff dimension and Kleinian groups” In Acta Math. 179.1, 1997, pp. 1–39 DOI: 10.1007/BF02392718
  12. Francis Bonahon “Bouts des variétés hyperboliques de dimension 3333” In Ann. of Math. (2) 124.1, 1986, pp. 71–158 DOI: 10.2307/1971388
  13. B.H. Bowditch “Convergence groups and configuration spaces” In Geometric group theory down under (Canberra, 1996) de Gruyter, Berlin, 1999, pp. 23–54
  14. B.H. Bowditch “Some results on the geometry of convex hulls in manifolds of pinched negative curvature” In Comment. Math. Helv. 69.1, 1994, pp. 49–81 DOI: 10.1007/BF02564474
  15. “On the joint spectral radius for isometries of non-positively curved spaces and uniform growth” In Ann. Inst. Fourier (Grenoble) 71.1, 2021, pp. 317–391 URL: http://aif.cedram.org/item?id=AIF_2021__71_1_317_0
  16. Martin R. Bridson and André Haefliger “Metric spaces of non-positive curvature” 319, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] Springer-Verlag, Berlin, 1999, pp. xxii+643 DOI: 10.1007/978-3-662-12494-9
  17. Robert Brooks “Circle packings and co-compact extensions of Kleinian groups” In Invent. Math. 86.3, 1986, pp. 461–469 DOI: 10.1007/BF01389263
  18. Marc Burger “Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank 2222” In Int. Math. Res. Not. IMRN 1993.7, 1993, pp. 217–225 DOI: 10.1155/S1073792893000236
  19. “Currents, systoles, and compactifications of character varieties” In Proc. Lond. Math. Soc. (3) 123.6, 2021, pp. 565–596 DOI: 10.1112/plms.12419
  20. “Manhattan geodesics and the boundary of the space of metric structures on hyperbolic groups” ArXiv preprint, 2022 URL: https://arxiv.org/abs/2210.07136
  21. “The Manhattan curve, ergodic theory of topological flows and rigidity” ArXiv preprint, 2021 URL: https://arxiv.org/abs/2104.13451
  22. David Constantine “Marked length spectrum rigidity in non-positive curvature with singularities” In Indiana Univ. Math. J. 67.6, 2018, pp. 2337–2361 DOI: 10.1512/iumj.2018.67.7545
  23. Michel Coornaert, Thomas Delzant and Athanase Papadopoulos “Géométrie et théorie des groupes” Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary 1441, Lecture Notes in Mathematics Springer-Verlag, Berlin, 1990, pp. x+165
  24. Rémi Coulon, Françoise Dal’Bo and Andrea Sambusetti “Growth gap in hyperbolic groups and amenability” In Geom. Funct. Anal. 28.5, 2018, pp. 1260–1320 DOI: 10.1007/s00039-018-0459-6
  25. François Dahmani, Suraj Krishna MS and Jean Pierres Mutanguha “Hyperbolic hyperbolic-by-cyclic groups are cubulable” To appear in Geom. Topol., 2023 URL: https://arxiv.org/abs/2306.15054
  26. Françoise Dal’bo “Remarques sur le spectre des longueurs d’une surface et comptages” In Bol. Soc. Brasil. Mat. (N.S.) 30.2, 1999, pp. 199–221 DOI: 10.1007/BF01235869
  27. Luca De Rosa and Didac Martinez-Granado “Dual spaces of geodesic currents” ArXiv preprint, 2022 URL: https://arxiv.org/abs/2211.05164
  28. “Cubulable Kähler groups” In Geom. Topol. 23.4, 2019, pp. 2125–2164 DOI: 10.2140/gt.2019.23.2125
  29. “Geometric group theory” With an appendix by Bogdan Nica 63, American Mathematical Society Colloquium Publications American Mathematical Society, Providence, RI, 2018, pp. xx+819 DOI: 10.1090/coll/063
  30. Viveka Erlandsson, Hugo Parlier and Juan Souto “Counting curves, and the stable length of currents” In J. Eur. Math. Soc. (JEMS) 22.6, 2020, pp. 1675–1702 DOI: 10.4171/jems/953
  31. “Deforming cubulations of hyperbolic groups” In J. Topol. 14.3, 2021, pp. 877–912
  32. Gerald B. Folland “A course in abstract harmonic analysis”, Textbooks in Mathematics CRC Press, Boca Raton, FL, 2016, pp. xiii+305 pp.+loose errata
  33. “Quasi-Fuchsian vs negative curvature metrics on surface groups” In Israel J. Math. 251.1, 2022, pp. 365–378 DOI: 10.1007/s11856-022-2440-1
  34. Alex Furman “Coarse-geometric perspective on negatively curved manifolds and groups” In Rigidity in dynamics and geometry (Cambridge, 2000) Springer, Berlin, 2002, pp. 149–166
  35. David Futer and Daniel T Wise “Cubulating random quotients of hyperbolic cubulated groups” In Trans. Amer. Math. Soc. Ser. B 11, 2024, pp. 622–666
  36. “Sur les groupes hyperboliques d’après Mikhael Gromov” 83, Progress in Mathematics Birkhäuser Boston, Inc., Boston, MA, 1990, pp. xii+285 DOI: 10.1007/978-1-4684-9167-8
  37. “Widths of subgroups” In Trans. Amer. Math. Soc. 350.1, 1998, pp. 321–329 DOI: 10.1090/S0002-9947-98-01792-9
  38. Sébastien Gouëzel, Frédéric Mathéus and François Maucourant “Entropy and drift in word hyperbolic groups” In Invent. Math. 211.3, 2018, pp. 1201–1255 DOI: 10.1007/s00222-018-0788-y
  39. “Non-arithmetic groups in Lobachevsky spaces” In Publications Mathématiques de l’IHÉS 66, 1987, pp. 93–103
  40. Frédéric Haglund “Isometries of CAT⁢(0)CAT0\text{CAT}(0)CAT ( 0 ) cube complexes are semi-simple” In Ann. Math. Québec, 2021 DOI: 10.1007/s40316-021-00186-2
  41. Frédéric Haglund and Daniel T. Wise “Special cube complexes” In Geom. Funct. Anal. 17.5, 2008, pp. 1551–1620 DOI: 10.1007/s00039-007-0629-4
  42. G.Christopher Hruska and Daniel T. Wise “Finiteness properties of cubulated groups” In Compos. Math. 150.3, 2014, pp. 453–506 DOI: 10.1112/S0010437X13007112
  43. “Immersing almost geodesic surfaces in a closed hyperbolic three manifold” In Ann. of Math. (2) 175.3, 2012, pp. 1127–1190 DOI: 10.4007/annals.2012.175.3.4
  44. Fanny Kassel “Geometric structures and representations of discrete groups” In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures World Sci. Publ., Hackensack, NJ, 2018, pp. 1115–1151
  45. Svetlana A. Krat “On pairs of metrics invariant under a cocompact action of a group” In Electron. Res. Announc. Amer. Math. Soc. 7, 2001, pp. 79–86 DOI: 10.1090/S1079-6762-01-00097-X
  46. François Labourie “Asymptotic counting of minimal surfaces and of surface groups in hyperbolic 3-manifolds” In Astérisque, 2021, pp. Exp. No. 1179\bibrangessep425–457
  47. Jiakai Li and Daniel T. Wise “No growth-gaps for special cube complexes” In Groups Geom. Dyn. 14.1, 2020, pp. 117–135 DOI: 10.4171/ggd/537
  48. Ben Lowe “Deformations of totally geodesic foliations and minimal surfaces in negatively curved 3-manifolds” In Geom. Funct. Anal. 31.4, 2021, pp. 895–929 DOI: 10.1007/s00039-021-00568-2
  49. “Minimal surface entropy and average area ratio” To appear in J. Differential Geom., 2021 URL: https://arxiv.org/abs/2110.09451
  50. Colin Maclachlan and Alan W. Reid “The arithmetic of hyperbolic 3-manifolds” 219, Graduate Texts in Mathematics Springer-Verlag, New York, 2003, pp. xiv+463 DOI: 10.1007/978-1-4757-6720-9
  51. Michael Magee “Quantitative spectral gap for thin groups of hyperbolic isometries” In J. Eur. Math. Soc. (JEMS) 17.1, 2015, pp. 151–187 DOI: 10.4171/JEMS/500
  52. G.A. Margulis “Discrete subgroups of semisimple Lie groups” 17, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] Springer-Verlag, Berlin, 1991, pp. x+388 DOI: 10.1007/978-3-642-51445-6
  53. “A combination theorem for cubulation in small cancellation theory over free products” In Ann. Inst. Fourier (Grenoble) 67.4, 2017, pp. 1613–1670 URL: http://aif.cedram.org/item?id=AIF_2017__67_4_1613_0
  54. “The space of co-geodesic currents of a hyperbolic group” In preparation
  55. “Positively ratioed representations” In Comment. Math. Helv. 94.2, 2019, pp. 273–345 DOI: 10.4171/CMH/461
  56. Curtis T. McMullen “Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups” In J. Differential Geom. 51.3, 1999, pp. 471–515 URL: http://projecteuclid.org/euclid.jdg/1214425139
  57. “On the space of ergodic invariant measures of unipotent flows” In Ergodic Theory Dynam. Systems 15.1, 1995, pp. 149–159 DOI: 10.1017/S0143385700008282
  58. Graham A. Niblo and Martin A. Roller “Groups acting on cubes and Kazhdan’s property (T)” In Proc. Amer. Math. Soc. 126.3, 1998, pp. 693–699 DOI: 10.1090/S0002-9939-98-04463-3
  59. Eduardo Oregón-Reyes “The space of metric structures on hyperbolic groups” In J. Lond. Math. Soc. (2) 107.3, 2023, pp. 914–942
  60. Jean-Pierre Otal “Le spectre marqué des longueurs des surfaces à courbure négative” In Ann. of Math. (2) 131.1, 1990, pp. 151–162 DOI: 10.2307/1971511
  61. Walter Parry “Axioms for translation length functions” In Arboreal group theory (Berkeley, CA, 1988) 19, Math. Sci. Res. Inst. Publ. Springer, New York, 1991, pp. 295–330 DOI: 10.1007/978-1-4612-3142-4“˙11
  62. Frédéric Paulin “On the critical exponent of a discrete group of hyperbolic isometries” In Differential Geom. Appl. 7.3, 1997, pp. 231–236 DOI: 10.1016/S0926-2245(96)00051-4
  63. Zhenghao Rao “Subgroups of Genus-2 Quasi-Fuchsian groups and Cocompact Kleinian Groups” arXiv preprint, 2023 URL: %5Chttps://arXiv.org/abs/2302.01995
  64. Marina Ratner “On Raghunathan’s measure conjecture” In Ann. of Math. (2) 134.3, 1991, pp. 545–607 DOI: 10.2307/2944357
  65. Guyan Robertson “Crofton formulae and geodesic distance in hyperbolic spaces” In J. Lie Theory 8.1, 1998, pp. 163–172
  66. Michah Sageev “CAT⁢(0)CAT0\text{CAT}(0)CAT ( 0 ) cube complexes and groups” In Geometric group theory 21, IAS/Park City Math. Ser. Amer. Math. Soc., Providence, RI, 2014, pp. 7–54 DOI: 10.1090/pcms/021/02
  67. Michah Sageev “Codimension-1111 subgroups and splittings of groups” In J. Algebra 189.2, 1997, pp. 377–389 DOI: 10.1006/jabr.1996.6884
  68. Michah Sageev “Ends of group pairs and non-positively curved cube complexes” In Proc. London Math. Soc. (3) 71.3, 1995, pp. 585–617 DOI: 10.1112/plms/s3-71.3.585
  69. Dounnu Sasaki “Subset currents on surfaces” In Mem. Amer. Math. Soc. 278.1368, 2022, pp. v+165 DOI: 10.1090/memo/1368
  70. Andrea Seppi “Minimal discs in hyperbolic space bounded by a quasicircle at infinity” In Comment. Math. Helv. 91.4, 2016, pp. 807–839 DOI: 10.4171/CMH/403
  71. Nimish A. Shah “Closures of totally geodesic immersions in manifolds of constant negative curvature” In Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 718–732
  72. Nimish A. Shah “Uniformly distributed orbits of certain flows on homogeneous spaces” In Math. Ann. 289.2, 1991, pp. 315–334 DOI: 10.1007/BF01446574
  73. Karen K. Uhlenbeck “Closed minimal surfaces in hyperbolic 3333-manifolds” In Seminar on minimal submanifolds 103, Ann. of Math. Stud. Princeton Univ. Press, Princeton, NJ, 1983, pp. 147–168
  74. Daniel T. Wise “The structure of groups with a quasiconvex hierarchy” 209, Annals of Mathematics Studies Princeton University Press, Princeton, NJ, 2021, pp. x+357 DOI: 10.1515/9780691213507
  75. Robert J. Zimmer “Ergodic theory and semisimple groups” 81, Monographs in Mathematics Birkhäuser Verlag, Basel, 1984, pp. x+209 DOI: 10.1007/978-1-4684-9488-4
Citations (1)

Summary

We haven't generated a summary for this paper yet.