Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Schur-Weyl dualities for the rook monoid: an approach via Schur algebras (2404.01493v1)

Published 1 Apr 2024 in math.RT

Abstract: The rook monoid, also known as the symmetric inverse monoid, is the archetypal structure when it comes to extend the principle of symmetry. In this paper, we establish a Schur-Weyl duality between this monoid and an extension of the classical Schur algebra, which we name the extended Schur algebra. We also explain how this relates to Solomon's Schur-Weyl duality between the rook monoid and the general linear group and mention some advantages of our approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Bowman C, Doty S, Martin S (2022) Integral Schur-Weyl duality for partition algebras. Algebr Comb 5(2):371–399. 10.5802/alco.214, URL https://doi.org/10.5802/alco.214 Brauer [1937] Brauer R (1937) On algebras which are connected with the semisimple continuous groups. Ann of Math (2) 38(4):857–872. 10.2307/1968843, URL http://dx.doi.org/10.2307/1968843 Carter and Lusztig [1974] Carter RW, Lusztig G (1974) On the modular representations of the general linear and symmetric groups. Math Z 136:193–242 de Concini and Procesi [1976] de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Brauer R (1937) On algebras which are connected with the semisimple continuous groups. Ann of Math (2) 38(4):857–872. 10.2307/1968843, URL http://dx.doi.org/10.2307/1968843 Carter and Lusztig [1974] Carter RW, Lusztig G (1974) On the modular representations of the general linear and symmetric groups. Math Z 136:193–242 de Concini and Procesi [1976] de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Carter RW, Lusztig G (1974) On the modular representations of the general linear and symmetric groups. Math Z 136:193–242 de Concini and Procesi [1976] de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  2. Brauer R (1937) On algebras which are connected with the semisimple continuous groups. Ann of Math (2) 38(4):857–872. 10.2307/1968843, URL http://dx.doi.org/10.2307/1968843 Carter and Lusztig [1974] Carter RW, Lusztig G (1974) On the modular representations of the general linear and symmetric groups. Math Z 136:193–242 de Concini and Procesi [1976] de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Carter RW, Lusztig G (1974) On the modular representations of the general linear and symmetric groups. Math Z 136:193–242 de Concini and Procesi [1976] de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  3. Carter RW, Lusztig G (1974) On the modular representations of the general linear and symmetric groups. Math Z 136:193–242 de Concini and Procesi [1976] de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  4. de Concini C, Procesi C (1976) A characteristic free approach to invariant theory. Advances in Math 21(3):330–354 Curtis and Reiner [1981] Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  5. Curtis CW, Reiner I (1981) Methods of representation theory. Vol. I. John Wiley & Sons Inc., New York, with applications to finite groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication Dipper et al [2008] Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  6. Dipper R, Doty S, Hu J (2008) Brauer algebras, symplectic Schur algebras and Schur-Weyl duality. Trans Amer Math Soc 360(1):189–213. 10.1090/S0002-9947-07-04179-7, URL https://doi.org/10.1090/S0002-9947-07-04179-7 Doty and Hu [2009] Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  7. Doty S, Hu J (2009) Schur-Weyl duality for orthogonal groups. Proc Lond Math Soc (3) 98(3):679–713. 10.1112/plms/pdn044, URL https://doi.org/10.1112/plms/pdn044 Goodman and Wallach [2009] Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  8. Goodman R, Wallach NR (2009) Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol 255. Springer, Dordrecht, 10.1007/978-0-387-79852-3, URL https://doi.org/10.1007/978-0-387-79852-3 Graham and Lehrer [1996] Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  9. Graham JJ, Lehrer GI (1996) Cellular algebras. Invent Math 123(1):1–34. 10.1007/BF01232365, URL http://dx.doi.org/10.1007/BF01232365 Green [1980] Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  10. Green JA (1980) Polynomial representations of GLnsubscriptGL𝑛{\rm GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Lecture Notes in Mathematics, vol 830. Springer-Verlag, Berlin Grood [2006] Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  11. Grood C (2006) The rook partition algebra. J Combin Theory Ser A 113(2):325–351. 10.1016/j.jcta.2005.03.006, URL https://doi.org/10.1016/j.jcta.2005.03.006 Halverson [1996] Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  12. Halverson T (1996) Characters of the centralizer algebras of mixed tensor representations of Gl⁢(r,ℂ)Gl𝑟ℂ{\rm Gl}(r,\mathbb{C})roman_Gl ( italic_r , blackboard_C ) and the quantum group 𝔘q⁢(ℊ⁢l⁢(r,ℂ))subscript𝔘𝑞ℊ𝑙𝑟ℂ\mathfrak{U}_{q}({\mathcal{g}l}(r,\mathbb{C}))fraktur_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( caligraphic_g italic_l ( italic_r , blackboard_C ) ). Pacific J Math 174(2):359–410. URL http://projecteuclid.org/euclid.pjm/1102365176 Halverson [2004] Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  13. Halverson T (2004) Representations of the q𝑞qitalic_q-rook monoid. J Algebra 273(1):227–251. 10.1016/j.jalgebra.2003.11.002, URL http://dx.doi.org/10.1016/j.jalgebra.2003.11.002 Halverson and delMas [2014] Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  14. Halverson T, delMas E (2014) Representations of the Rook-Brauer algebra. Comm Algebra 42(1):423–443. 10.1080/00927872.2012.716120, URL https://doi.org/10.1080/00927872.2012.716120 Halverson and Ram [2005] Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  15. Halverson T, Ram A (2005) Partition algebras. European J Combin 26(6):869–921. 10.1016/j.ejc.2004.06.005, URL http://dx.doi.org/10.1016/j.ejc.2004.06.005 Jacobson [1989] Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  16. Jacobson N (1989) Basic algebra. II, 2nd edn. W. H. Freeman and Company, New York Jones [1994] Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  17. Jones VFR (1994) The Potts model and the symmetric group. In: Subfactors (Kyuzeso, 1993). World Sci. Publ., River Edge, NJ, p 259–267 Kudryavtseva and Mazorchuk [2008] Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  18. Kudryavtseva G, Mazorchuk V (2008) Schur-Weyl dualities for symmetric inverse semigroups. J Pure Appl Algebra 212(8):1987–1995. 10.1016/j.jpaa.2007.12.004, URL https://doi.org/10.1016/j.jpaa.2007.12.004 Lawson [1998] Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  19. Lawson MV (1998) Inverse semigroups. World Scientific Publishing Co. Inc., River Edge, NJ, 10.1142/9789812816689, URL http://dx.doi.org/10.1142/9789812816689, the theory of partial symmetries Martin [1994] Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  20. Martin P (1994) Temperley-Lieb algebras for nonplanar statistical mechanics—the partition algebra construction. J Knot Theory Ramifications 3(1):51–82. 10.1142/S0218216594000071, URL http://dx.doi.org/10.1142/S0218216594000071 Martin [1996] Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  21. Martin P (1996) The structure of the partition algebras. J Algebra 183(2):319–358. 10.1006/jabr.1996.0223, URL http://dx.doi.org/10.1006/jabr.1996.0223 Martin and Mazorchuk [2014] Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  22. Martin P, Mazorchuk V (2014) On the representation theory of partial Brauer algebras. Q J Math 65(1):225–247. 10.1093/qmath/has043, URL https://doi.org/10.1093/qmath/has043 Martin [1990] Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  23. Martin PP (1990) Representations of graph Temperley-Lieb algebras. Publ Res Inst Math Sci 26(3):485–503. 10.2977/prims/1195170958, URL https://doi.org/10.2977/prims/1195170958 Martin [2008] Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  24. Martin S (2008) Schur algebras and representation theory, Cambridge Tracts in Mathematics, vol 112. Cambridge University Press, Cambridge, reprint of the 1993 original Munn [1955] Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  25. Munn WD (1955) On semigroup algebras. Proc Cambridge Philos Soc 51:1–15 Munn [1957a] Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  26. Munn WD (1957a) The characters of the symmetric inverse semigroup. Proc Cambridge Philos Soc 53:13–18 Munn [1957b] Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  27. Munn WD (1957b) Matrix representations of semigroups. Proc Cambrdige Philos Soc 53:5–12 Paget [2006] Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  28. Paget R (2006) Representation theory of q𝑞qitalic_q-rook monoid algebras. J Algebraic Combin 24(3):239–252. 10.1007/s10801-006-0010-y, URL http://dx.doi.org/10.1007/s10801-006-0010-y Ponizovskiĭ [1956] Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  29. Ponizovskiĭ IS (1956) On matrix representations of associative systems. Mat Sb NS 38(80):241–260 Schur [1901] Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  30. Schur I (1901) Über eine klasse von matrizen, die sich einer gegebenen matrix zuordnen lassen, dissertation. In I. Schur, Gesammelte Abhandlungen I, 1-70, Springer, Berlin, 1973 Schur [1927] Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  31. Schur I (1927) Über die rationalen darstellungen der allgemeinen linearen gruppe. sitzber. königl. preuß. ak. wiss., physikal.-math. klasse, pages 58-75. In I. Schur, Gesammelte Abhandlungen. Band III, 68-85, Springer, Berlin, 1973. Solomon [1990] Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  32. Solomon L (1990) The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom Dedicata 36(1):15–49. 10.1007/BF00181463, URL http://dx.doi.org/10.1007/BF00181463 Solomon [2002] Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  33. Solomon L (2002) Representations of the rook monoid. J Algebra 256(2):309–342. 10.1016/S0021-8693(02)00004-2, URL http://dx.doi.org/10.1016/S0021-8693(02)00004-2 Solomon [2004] Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  34. Solomon L (2004) The Iwahori algebra of 𝕄n⁢(𝔽q)subscript𝕄𝑛subscript𝔽𝑞\mathbb{M}_{n}(\mathbb{F}_{q})blackboard_M start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ). A presentation and a representation on tensor space. J Algebra 273(1):206–226. 10.1016/j.jalgebra.2003.08.013, URL http://dx.doi.org/10.1016/j.jalgebra.2003.08.013 Steinberg [2006] Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  35. Steinberg B (2006) Möbius functions and semigroup representation theory. J Combin Theory Ser A 113(5):866–881. 10.1016/j.jcta.2005.08.004, URL http://dx.doi.org/10.1016/j.jcta.2005.08.004 Thrall [1944] Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  36. Thrall RM (1944) On the decomposition of modular tensors. II. Ann of Math (2) 45:639–657. 10.2307/1969294, URL https://doi.org/10.2307/1969294 Vagner [1952] Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  37. Vagner VV (1952) Generalized groups. Doklady Akad Nauk SSSR (NS) 84:1119–1122 Weyl [1939] Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.
  38. Weyl H (1939) The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton, N.J.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com