Conformal Invariance of Clifford Monogenic Functions in the Indefinite Signature Case (2404.01398v1)
Abstract: We extend constructions of classical Clifford analysis to the case of indefinite non-degenerate quadratic forms. Clifford analogues of complex holomorphic functions - called monogenic functions - are defined by means of the Dirac operators that factor a certain wave operator. One of the fundamental features of quaternionic analysis is the invariance of quaternionic analogues of holomorphic function under conformal (or Mobius) transformations. A similar invariance property is known to hold in the context of Clifford algebras associated to positive definite quadratic forms. We generalize these results to the case of Clifford algebras associated to all non-degenerate quadratic forms. This result puts the indefinite signature case on the same footing as the classical positive definite case.
- M.F. Atiyah, R. Bott and A. Shapiro “Clifford Modules” In Topology 3, 1964, pp. 3–38
- L.V. Ahlfors “Möbius Transformations and Clifford Numbers” In Differential Geometry and Complex Analysis: A Volume Dedicated to the Memory of Harry Ernest Rauch Berlin, Heidelberg: Springer Berlin Heidelberg, 1985, pp. 65–73 DOI: 10.1007/978-3-642-69828-6˙5
- F. Brackx, R. Delanghe and F. Sommen “Clifford Analysis”, Chapman & Hall/CRC research notes in mathematics series Pitman Advanced Pub. Program, 1982
- B. Bojarski “Conformally covariant differential operators” In Proceedings, XXth Iranian Mathematical Congress, 1989
- “Regular spinor valued mappings” In Seminarii di Geometria, Bologna 1984, 1986, pp. 7–22
- “The Spinorial Chessboard” Springer Berlin, Heidelberg, 1988 DOI: 10.1007/978-3-642-83407-3
- C.C. Chevalley “The Algebraic Theory of Spinors” Columbia University Press, 1954 DOI: doi:10.7312/chev93056
- J. Cnops “Vahlen Matrices for Non-Definite Metrics” In Clifford Algebras with Numeric and Symbolic Computations Boston, MA: Birkhäuser Boston, 1996, pp. 155–164 DOI: 10.1007/978-1-4615-8157-4˙10
- “Analysis of Dirac Systems and Computational Algebra”, Progress in Mathematical Physics Birkhäuser Boston, 2004
- R. Delanghe, F. Sommen and V. Souček “Clifford Algebra and Spinor-valued Functions: Disk”, Clifford Algebra and Spinor-valued Functions: A Function Theory for the Dirac Operator Kluwer Academic Publishers, 1992 DOI: 10.1007/978-94-011-2922-0
- D.J.H. Garling “Clifford Algebras: An Introduction”, London Mathematical Society Student Texts Cambridge University Press, 2011 DOI: 10.1017/CBO9780511972997
- “Clifford Algebras and Dirac Operators in Harmonic Analysis”, Cambridge Studies in Advanced Mathematics Cambridge University Press, 1991
- S. Kobayashi “Transformation Groups in Differential Geometry” Springer My Copy UK
- T.Y. Lam “Introduction to Quadratic Forms over Fields” 67, Graduate Studies in Mathematics American Mathematical Society, 2005
- “Clifford analysis with indefinite signature” In Complex Analysis and Operator Theory 15.1, 2021 DOI: 10.1007/s11785-020-01062-7
- J. Maks “Clifford algebras and Möbius transformations” In Clifford Algebras and their Applications in Mathematical Physics: Proceedings of Second Workshop held at Montpellier, France, 1989 Dordrecht: Springer Netherlands, 1992, pp. 57–63 DOI: 10.1007/978-94-015-8090-8˙6
- J. Ryan “Complexified clifford analysis” In Complex Variables, Theory and Application: An International Journal 1.1 Taylor & Francis, 1982, pp. 119–149 DOI: 10.1080/17476938208814009
- J. Ryan “Properties of isolated singularities of some functions taking values in real Clifford algebras” In Mathematical Proceedings of the Cambridge Philosophical Society 95.2 Cambridge University Press, 1984, pp. 277–298 DOI: 10.1017/S0305004100061545
- J. Ryan “Conformally Covariant Operators in Clifford Analysis” In Z. Anal. Anwend. 14.4, 1995, pp. 677–704
- M. Schottenloher “A Mathematical Introduction to Conformal Field Theory”, Lecture Notes in Physics Springer, 2008 DOI: 10.1007/978-3-540-68628-6
- A. Sudbery “Quaternionic analysis” In Mathematical Proceedings of the Cambridge Philosophical Society 85.2 Cambridge University Press, 1979, pp. 199–225 DOI: 10.1017/S0305004100055638
- K.Th. Vahlen “Ueber Bewegungen und complexe Zahlen” In Mathematische Annalen 55, 1902, pp. 585–593