Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Chao's Estimator as a Stopping Criterion for Technology-Assisted Review (2404.01176v1)

Published 1 Apr 2024 in cs.IR

Abstract: Technology-Assisted Review (TAR) aims to reduce the human effort required for screening processes such as abstract screening for systematic literature reviews. Human reviewers label documents as relevant or irrelevant during this process, while the system incrementally updates a prediction model based on the reviewers' previous decisions. After each model update, the system proposes new documents it deems relevant, to prioritize relevant documentsover irrelevant ones. A stopping criterion is necessary to guide users in stopping the review process to minimize the number of missed relevant documents and the number of read irrelevant documents. In this paper, we propose and evaluate a new ensemble-based Active Learning strategy and a stopping criterion based on Chao's Population Size Estimator that estimates the prevalence of relevant documents in the dataset. Our simulation study demonstrates that this criterion performs well on several datasets and is compared to other methods presented in the literature.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (1)

Summary

We haven't generated a summary for this paper yet.