Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Joint Chance Constraints Approximation for Uncertainty Modeling in Dispatch Problems (2404.01167v1)

Published 1 Apr 2024 in math.OC, cs.SY, and eess.SY

Abstract: Uncertainty modeling has become increasingly important in power system decision-making. The widely-used tractable uncertainty modeling method-chance constraints with Conditional Value at Risk (CVaR) approximation, can be overconservative and even turn an originally feasible problem into an infeasible one. This paper proposes a new approximation method for multiple joint chance constraints (JCCs) to model the uncertainty in dispatch problems, which solves the conservativeness and potential infeasibility concerns of CVaR. The proposed method is also convenient for controlling the risk levels of different JCCs, which is necessary for power system applications since different resources may be affected by varying degrees of uncertainty or have different importance to the system. We then formulate a data-driven distributionally robust chance-constrained programming model for the power system multiperiod dispatch problem and leverage the proposed approximation method to solve it. In the numerical simulations, two small general examples clearly demonstrate the superiority of the proposed method, and the results of the multiperiod dispatch problem on IEEE test cases verify its practicality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. J. Radecke, J. Hefele, and L. Hirth, “Markets for local flexibility in distribution networks,” Kiel, Hamburg: ZBW – Leibniz Information Centre for Economics, Working Paper, 2019.
  2. PJM Manual 11: Energy and Ancillary Services Market Operations. [Online]. Available: https://www.pjm.com/-/media/documents/manuals/m11.ashx
  3. A. Papavasiliou and S. S. Oren, “Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network,” Operations research, vol. 61, no. 3, pp. 578–592, 2013.
  4. A. Charnes and W. W. Cooper, “Deterministic equivalents for optimizing and satisficing under chance constraints,” Operations research, vol. 11, no. 1, pp. 18–39, 1963.
  5. D. Bertsimas and D. B. Brown, “Constructing uncertainty sets for robust linear optimization,” Operations Research, vol. 57, no. 6, pp. 1483–1495, Dec. 2009.
  6. A. Zhou, M. Yang, Z. Wang, and P. Li, “A linear solution method of generalized robust chance constrained real-time dispatch,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 7313–7316, 2018.
  7. D. Huo, C. Gu, D. Greenwood, Z. Wang, P. Zhao, and J. Li, “Chance-constrained optimization for integrated local energy systems operation considering correlated wind generation,” International Journal of Electrical Power & Energy Systems, vol. 132, p. 107153, 2021.
  8. S. Najafi, M. M. Lakouraj, S. A. Sedgh, H. Livani, M. Benidris, and M. S. Fadali, “Chance-constraint Volt-VAR optimization in PV-penetrated distribution networks,” in 2022 IEEE Kansas Power and Energy Conference (KPEC), 2022, pp. 1–6.
  9. J. Luedtke and S. Ahmed, “A sample approximation approach for optimization with probabilistic constraints,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 674–699, 2008.
  10. A. Ruszczyński, “Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra,” Mathematical Programming, vol. 93, pp. 195–215, 2002.
  11. M. Jia, G. Hug, and C. Shen, “Iterative decomposition of joint chance constraints in OPF,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4836–4839, Sep. 2021.
  12. W. Chen, M. Sim, J. Sun, and C.-P. Teo, “From CVaR to uncertainty set: Implications in joint chance-constrained optimization,” Operations Research, vol. 58, no. 2, pp. 470–485, Apr. 2010.
  13. B. Liu, Q. Zhang, X. Ge, and Z. Yuan, “CVaR-based approximations of Wasserstein distributionally robust chance constraints with application to process scheduling,” Industrial & Engineering Chemistry Research, vol. 59, no. 20, pp. 9562–9574, 2020.
  14. Y. Zhang and G. B. Giannakis, “Distributed stochastic market clearing with high-penetration wind power,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 895–906, 2015.
  15. P. Mohajerin Esfahani and D. Kuhn, “Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations,” Mathematical Programming, vol. 171, no. 1-2, pp. 115–166, 2018.
  16. Y. Guo, K. Baker, E. Dall’Anese, Z. Hu, and T. H. Summers, “Data-based distributionally robust stochastic optimal power flow—Part I: Methodologies,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 1483–1492, 2018.
  17. C. Ordoudis, V. A. Nguyen, D. Kuhn, and P. Pinson, “Energy and reserve dispatch with distributionally robust joint chance constraints,” Operations Research Letters, vol. 49, no. 3, pp. 291–299, 2021.
  18. L. Yang, Y. Xu, H. Sun, and W. Wu, “Tractable convex approximations for distributionally robust joint chance-constrained optimal power flow under uncertainty,” IEEE Transactions on Power Systems, vol. 37, no. 3, pp. 1927–1941, May 2022.
  19. J. Zhai, Y. Jiang, Y. Shi, C. N. Jones, and Z. Xiaoping, “Distributionally robust joint chance-constrained dispatch for integrated transmission-distribution systems via distributed optimization,” IEEE Transactions on Smart Grid, vol. 13, no. 3, pp. 2132–2147, May 2022.
  20. Y. Ding, T. Morstyn, and M. D. McCulloch, “Distributionally robust joint chance-constrained optimization for networked microgrids considering contingencies and renewable uncertainty,” IEEE Transactions on Smart Grid, vol. 13, no. 3, pp. 2467–2478, May 2022.
  21. S. Zymler, D. Kuhn, and B. Rustem, “Distributionally robust joint chance constraints with second-order moment information,” Mathematical Programming, vol. 137, no. 1, pp. 167–198, Feb. 2013.
  22. W. Xie, “On distributionally robust chance constrained programs with Wasserstein distance,” Mathematical Programming, vol. 186, no. 1, pp. 115–155, Mar. 2021.
  23. M. Lubin, Y. Dvorkin, and S. Backhaus, “A robust approach to chance constrained optimal power flow with renewable generation,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3840–3849, 2016.
  24. E. Dall’Anese, K. Baker, and T. Summers, “Chance-constrained AC optimal power flow for distribution systems with renewables,” IEEE Transactions on Power Systems, vol. 32, no. 5, pp. 3427–3438, 2017.
  25. A. Pena-Ordieres, D. K. Molzahn, L. A. Roald, and A. Wächter, “DC optimal power flow with joint chance constraints,” IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 147–158, 2020.
  26. N. Jiang and W. Xie, “ALSO-X and ALSO-X+: Better convex approximations for chance constrained programs,” Operations Research, vol. 70, no. 6, pp. 3581–3600, Nov. 2022.
  27. A. Maghami, E. Ursavas, and A. Cherukuri, “A two-step approach to Wasserstein distributionally robust chance-and security-constrained dispatch,” IEEE Transactions on Power Systems, 2023, early access.
  28. J. Silva, J. Sumaili, R. J. Bessa, L. Seca, M. A. Matos, V. Miranda, M. Caujolle, B. Goncer, and M. Sebastian-Viana, “Estimating the active and reactive power flexibility area at the TSO-DSO interface,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4741–4750, 2018.
  29. M. Kalantar-Neyestanaki, F. Sossan, M. Bozorg, and R. Cherkaoui, “Characterizing the reserve provision capability area of active distribution networks: A linear robust optimization method,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2464–2475, 2019.
  30. R. A. Jabr, S. Karaki, and J. A. Korbane, “Robust multi-period OPF with storage and renewables,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2790–2799, Sep. 2015.
  31. Y. Wen, Z. Hu, and L. Liu, “Aggregate temporally coupled power flexibility of DERs considering distribution system security constraints,” IEEE Transactions on Power Systems, vol. 38, no. 4, pp. 3884–3896, 2023.
  32. Y. Wen, Z. Hu, J. He, and Y. Guo, “Improved inner approximation for aggregating power flexibility in active distribution networks and its applications,” IEEE Transactions on Smart Grid, 2023, early access.
  33. The MathWorks Inc., “MATLAB version: 9.13.0 (R2022b),” Natick, Massachusetts, United States, 2022. [Online]. Available: https://www.mathworks.com
  34. Gurobi Optimization, LLC, “Gurobi optimizer reference manual,” 2023. [Online]. Available: https://www.gurobi.com
  35. P. Pinson, “Wind energy: Forecasting challenges for its operational management,” Statistical Science, vol. 28, no. 4, pp. 564–585, 2013.
  36. M. Baran and F. Wu, “Optimal sizing of capacitors placed on a radial distribution system,” IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735–743, Jan. 1989.

Summary

We haven't generated a summary for this paper yet.