Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential-in-time training of nonlinear parametrizations for solving time-dependent partial differential equations (2404.01145v1)

Published 1 Apr 2024 in math.NA, cs.LG, and cs.NA

Abstract: Sequential-in-time methods solve a sequence of training problems to fit nonlinear parametrizations such as neural networks to approximate solution trajectories of partial differential equations over time. This work shows that sequential-in-time training methods can be understood broadly as either optimize-then-discretize (OtD) or discretize-then-optimize (DtO) schemes, which are well known concepts in numerical analysis. The unifying perspective leads to novel stability and a posteriori error analysis results that provide insights into theoretical and numerical aspects that are inherent to either OtD or DtO schemes such as the tangent space collapse phenomenon, which is a form of over-fitting. Additionally, the unified perspective facilitates establishing connections between variants of sequential-in-time training methods, which is demonstrated by identifying natural gradient descent methods on energy functionals as OtD schemes applied to the corresponding gradient flows.

Citations (2)

Summary

We haven't generated a summary for this paper yet.