Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability-Based Optimal Control Design for Soft Landing of Short-Stroke Actuators (2404.01125v1)

Published 1 Apr 2024 in eess.SY and cs.SY

Abstract: The impact forces during switching operations of short-stroke actuators may cause bouncing, audible noise and mechanical wear. The application of soft-landing control strategies to these devices aims at minimizing the impact velocities of their moving components to ultimately improve their lifetime and performance. In this paper, a novel approach for soft-landing trajectory planning, including probability functions, is proposed for optimal control of the actuators. The main contribution of the proposal is that it considers uncertainty in the contact position and hence the obtained trajectories are more robust against system uncertainties. The problem is formulated as an optimal control problem and transformed into a two-point boundary value problem for its numerical resolution. Simulated and experimental tests have been performed using a dynamic model and a commercial short-stroke solenoid valve. The results show a significant improvement in the expected velocities and accelerations at contact with respect to past solutions in which the contact position is assumed to be perfectly known.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. Montanari, F. Ronchi, and C. Rossi, “Trajectory generation for camless internal combustion engine valve control,” IEEE Int. Symp. Ind. Electron., vol. I, pp. 454–459, 2003.
  2. K. S. Peterson and A. G. Stefanopoulou, “Extremum seeking control for soft landing of an electromechanical valve actuator,” Automatica, vol. 40, no. 6, pp. 1063–1069, 2004.
  3. B. Borovic, A. Q. Liu, D. Popa, H. Cai, and F. L. Lewis, “Open-loop versus closed-loop control of MEMS devices: Choices and issues,” J. Micromechanics Microengineering, 2005.
  4. H. Sumali, J. E. Massad, D. A. Czaplewski, and C. W. Dyck, “Waveform design for pulse-and-hold electrostatic actuation in MEMS,” Sensors Actuators, A Phys., 2007.
  5. M. S. Allen, J. E. Massad, R. V. Field, and C. W. Dyck, “Input and Design Optimization Under Uncertainty to Minimize the Impact Velocity of an Electrostatically Actuated MEMS Switch,” J. Vib. Acoust., vol. 130, no. 2, p. 021009, 2008.
  6. J. C. Blecke, D. S. Epp, H. Sumali, and G. G. Parker, “A simple learning control to eliminate RF-MEMS switch bounce,” J. Microelectromechanical Syst., vol. 18, no. 2, pp. 458–465, 2009.
  7. P. Mercorelli, “Robust adaptive soft landing control of an electromagnetic valve actuator for camless engines,” Asian J. Control, vol. 18, no. 4, pp. 1299–1312, 2016.
  8. P. Eyabi and G. Washington, “Modeling and sensorless control of an electromagnetic valve actuator,” Mechatronics, vol. 16, no. 3, pp. 159–175, 2006.
  9. R. R. Chladny and C. R. Koch, “Flatness-based tracking of an electromechanical variable valve timing actuator with disturbance observer feedforward compensation,” IEEE Trans. Control Syst. Technol., vol. 16, no. 4, pp. 652–663, 2008.
  10. P. Mercorelli, “An Antisaturating Adaptive Preaction and a Slide Surface to Achieve Soft Landing Control for Electromagnetic Actuators,” IEEE/ASME Trans. Mechatronics, vol. 17, no. 1, pp. 76–85, feb 2012.
  11. E. Moya-Lasheras, C. Sagues, E. Ramirez-Laboreo, and S. Llorente, “Nonlinear bounded state estimation for sensorless control of an electromagnetic device,” in 2017 IEEE 56th Annu. Conf. Decis. Control.   IEEE, dec 2017, pp. 5050–5055.
  12. T. Braun, J. Reuter, and J. Rudolph, “Observer Design for Self-Sensing of Solenoid Actuators With Application to Soft Landing,” IEEE Trans. Control Syst. Technol., pp. 1–8, 2018.
  13. E. Ramirez-Laboreo, E. Moya-Lasheras, and C. Sagues, “Real-time electromagnetic estimation for reluctance actuators,” IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1952–1961, 2019.
  14. M. Benosman and G. M. Atinc, “Extremum seeking-based adaptive control for electromagnetic actuators,” Int. J. Control, vol. 88, no. 3, pp. 517–530, 2015.
  15. W. Hoffmann, K. Peterson, and A. G. Stefanopoulou, “Iterative learning control for soft landing of electromechanical valve actuator in camless engines,” IEEE Trans. Control Syst. Technol., vol. 11, no. 2, pp. 174–184, 2003.
  16. J. Tsai, C. R. Koch, and M. Saif, “Cycle Adaptive Feedforward Approach Controllers for an Electromagnetic Valve Actuator,” IEEE Trans. Control Syst. Technol., vol. 20, no. 3, pp. 738–746, may 2012.
  17. E. Ramirez-Laboreo, C. Sagues, and S. Llorente, “A New Run-to-Run Approach for Reducing Contact Bounce in Electromagnetic Switches,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 535–543, 2017.
  18. C. Robert Koch, A. F. Lynch, and S. K. Chung, “Flatness-based automotive solenoid valve control,” IFAC Proc. Vol., vol. 37, no. 13, pp. 817–822, sep 2004.
  19. T. Glück, W. Kemmetmüller, and A. Kugi, “Trajectory optimization for soft landing of fast-switching electromagnetic valves,” IFAC Proc. Vol., vol. 44, no. 1, pp. 11 532–11 537, 2011.
  20. A. Fabbrini, A. Garulli, and P. Mercorelli, “A trajectory generation algorithm for optimal consumption in electromagnetic actuators,” IEEE Trans. Control Syst. Technol., vol. 20, no. 4, pp. 1025–1032, 2012.
  21. E. Ramirez-Laboreo, M. G. L. Roes, and C. Sagues, “Hybrid dynamical model for reluctance actuators including saturation, hysteresis and eddy currents,” IEEE/ASME Transactions on Mechatronics, 2019, early access, doi:10.1109/TMECH.2019.2906755.
  22. M. di Bernardo, A. di Gaeta, C. I. Hoyos Velasco, and S. Santini, “Energy-Based Key-On Control of a Double Magnet Electromechanical Valve Actuator,” IEEE Trans. Control Syst. Technol., vol. 20, no. 5, pp. 1133–1145, sep 2012.
  23. J. Kierzenka and L. F. Shampine, “A BVP solver based on residual control and the Maltab PSE,” ACM Trans. Math. Softw., vol. 27, no. 3, pp. 299–316, 2001.
Citations (14)

Summary

We haven't generated a summary for this paper yet.