Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gelation in input-driven aggregation (2404.01032v1)

Published 1 Apr 2024 in cond-mat.stat-mech, cs.NA, math.CA, math.DS, and math.NA

Abstract: We investigate irreversible aggregation processes driven by a source of small mass clusters. In the spatially homogeneous situation, a well-mixed system is consists of clusters of various masses whose concentrations evolve according to an infinite system of nonlinear ordinary differential equations. We focus on the cluster mass distribution in the long time limit. An input-driven aggregation with rates proportional to the product of merging partners undergoes a percolation transition. We examine this process analytically and numerically. There are two theoretical schemes and two natural ways of numerical integration on the level of a truncated system with a finite number of equations. After the percolation transition, the behavior depends on the adopted approach: The giant component quickly engulfs the entire system (Flory approach), or a non-trivial stationary mass distribution emerges (Stockmayer approach). We also outline generalization to ternary aggregation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, New York, 1953).
  2. P. L. Krapivsky, S. Redner, and E. Ben-Naim, A kinetic view of statistical physics (Cambridge University Press, 2010).
  3. F. Leyvraz, Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Physics Reports 383, 95 (2003).
  4. M. Anand, K. Rajagopal, and K. R. Rajagopal, A model for the formation and lysis of blood clots, Pathophysiology of haemostasis and thrombosis 34, 109 (2006).
  5. V. M. Voloshchuk and Y. S. Sedunov, Kinetics of condensation-coagulation processes in the Earth atmosphere, Dokl. Akad. Nauk 235, 50 (1977).
  6. A. Chokshi, A. G. G. Tielens, and D. Hollenbach, Dust coagulation, Astrophys. J. 407, 806 (1993).
  7. S. K. Friedlander, Smoke, Dust and Haze (Oxford University Press, Oxford, 2000).
  8. A. A. Lushnikov, Introduction to aerosols (Wiley Online Library, 2010) pp. 1–41.
  9. B. Hinnemann, H. Hinrichsen, and D. E. Wolf, Epitaxial growth with pulsed deposition: Submonolayer scaling and Villain instability, Phys. Rev. E 67, 011602 (2003).
  10. L. Esposito, Planetary Rings (Cambridge University Press, Cambridge, UK, 2006).
  11. R. Schräpler and J. Blum, The physics of protopanetesimal dust agglomerates. VI. Erosion of large aggregates as a source of micrometer-sized particles, Astrophys. J. 734, 108 (2011).
  12. M. v. Smoluchowski, Drei vortrage uber diffusion, Brownsche bewegung und koagulation von kolloidteilchen, Zeit. Physik 17, 557 (1916).
  13. A. A. Lushnikov, Evolution of coagulating systems, Journal of Colloid and Interface Science 45, 549 (1973).
  14. N. V. Brilliantov, W. Otieno, and P. L. Krapivsky, Nonextensive supercluster states in aggregation with fragmentation, Phys. Rev. Lett. 127, 250602 (2021).
  15. W. Otieno, N. V. Brilliantov, and P. L. Krapivsky, Supercluster states and phase transitions in aggregation-fragmentation processes, Phys. Rev. E 108, 044142 (2023).
  16. J. Ke and Z. Lin, Kinetics of migration-driven aggregation processes, Phys. Rev. E 66, 050102 (2002).
  17. E. Ben-Naim and P. L. Krapivsky, Exchange-driven growth, Phys. Rev. E 68, 031104 (2003).
  18. P. L. Krapivsky, Mass exchange processes with input, J. Phys. A 48, 205003 (2015).
  19. R. L. Pego and J. J. L. Velázquez, Temporal oscillations in Becker–Döring equations with atomization, Nonlinearity 33, 1812 (2020).
  20. H. Hayakawa, Irreversible kinetic coagulations in the presence of a source, J. Phys. A 20, L801 (1987).
  21. E. Esenturk and C. Connaughton, Role of zero clusters in exchange-driven growth with and without input, Phys. Rev. E 101, 052134 (2020).
  22. A. I. Osinsky and N. V. Brilliantov, Anomalous aggregation regimes of temperature-dependent Smoluchowski equations, Phys. Rev. E 105, 034119 (2022).
  23. S. S. Budzinskiy, S. A. Matveev, and P. L. Krapivsky, Hopf bifurcation in addition-shattering kinetics, Phys. Rev. E 103, L040101 (2021).
  24. G. B. Field and W. C. Saslaw, A statistical model of the formation of stars and interstellar clouds, Astrophys. J 142, 568 (1965).
  25. W. H. White, On the form of steady-state solutions to the coagulation equations, J. Colloid Interface Sci. 87, 204 (1982).
  26. P. L. Krapivsky and C. Connaughton, Driven Brownian coagulation of polymers, J. Chem. Phys. 136 (2012).
  27. J.-Y. Fortin and M. Choi, Stability condition of the steady oscillations in aggregation models with shattering process and self-fragmentation, J. Phys. A 56, 385004 (2023).
  28. P. L. Krapivsky, Aggregation processes with n-particle elementary reactions, J. Phys. A 24, 4697 (1991).
  29. Y. Jiang, Scaling theory for multipolymer coagulation, Phys. Rev. E 50, 4901 (1994).
  30. P. L. Krapivsky, Diffusion-limited-aggregation processes with three-particle elementary reactions, Phys. Rev. E 49, 3233 (1994).
  31. A. M. Brener, Model of many-particle aggregation in dense particle systems, Chem. Eng. 38, 145 (2014).
  32. Y. Jiang, Instantaneous gelation in the generalized Smoluchovski coagulation equation, J. Phys. A 29, 7893 (1996).
  33. A. A. Lushnikov and V. N. Piskunov, Analytic solutions in the theory of coagulating systems with sinks, J. Appl. Math. Mech. 47, 743 (1983).
  34. P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. 5, 17 (1960).
  35. M. v. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeit. Physikalische Chemie 92, 129 (1918).
  36. S. Chandrasekhar, Stochastic problems in physics and astronomy, Reviews of modern physics 15, 1 (1943).
  37. I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295 (2011).
  38. R. Bro, PARAFAC. Tutorial and applications, Chemometrics and intelligent laboratory systems 38, 149 (1997).
  39. P. J. Flory, Molecular size distribution in three dimensional polymers. I. Gelation, J. Amer. Chem. Soc. 63, 3083 (1941a).
  40. P. J. Flory, Molecular size distribution in three dimensional polymers. II. Trifunctional branching units, J. Amer. Chem. Soc. 63, 3091 (1941b).
  41. P. J. Flory, Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units, J. Amer. Chem. Soc. 63, 3096 (1941c).
  42. W. H. Stockmayer, Theory of molecular size distribution and gel formation in branched-chain polymers, J. Chem. Phys. 11, 45 (1943).
  43. A. A. Lushnikov, From sol to gel exactly, Phys. Rev. Lett. 93, 198302 (2004).
  44. A. A. Lushnikov, Exact kinetics of the sol-gel transition, Phys. Rev. E 71, 046129 (2005).
  45. E. Ben-Naim and P. L. Krapivsky, Kinetic theory of random graphs: From paths to cycles, Phys. Rev. E 71, 026129 (2005).
  46. F. Leyvraz, Rate equation limit for a combinatorial solution of a stochastic aggregation model, Phys. Rev. E 106, 024133 (2022).
  47. B. Bollobás, Random Graphs (Cambridge University Press, Cambridge, UK, 2001).
  48. P. Flajolet and R. Sedgewick, Analytic combinatorics (Cambridge University Press, 2009).
  49. M. Newman, Networks: An Introduction (Oxford University Press, New York, USA, 2010).
  50. R. van der Hofstad, Random graphs and complex networks (Cambridge University Press, Cambridge, UK, 2016).
  51. A. Frieze and M. Karoński, Introduction to Random Graphs (Cambridge University Press, Cambridge, UK, 2016).
  52. S. Chatterjee, An introduction to large deviations for random graphs, Bull. Amer. Math. Soc. 53, 617 (2016).
  53. R. M. Ziff and G. Stell, Kinetics of polymer gelation, J. Chem. Phys. 73, 3492 (1980).
  54. F. Tanaka and M. Ishida, Phase formation of two-component physical gels, Physica A 204, 660 (1994).
  55. F. Tanaka, Polymer physics: applications to molecular association and thermoreversible gelation (Cambridge University Press, Cambridge, UK, 2011).
  56. M. V. Thamm and I. Y. Erukhimovich, Phase diagrams classification of the systems with thermoreversible alternating association (the Flory approach), J. Chem. Phys. 119, 2720 (2003).
  57. A. A. Lushnikov, Source-enhanced coalescence of trees in a random forest, Phys. Rev. E 92, 022135 (2015).
  58. A. Contat and N. Curien, Parking on Cayley trees and frozen Erdős-Rényi, Ann. Probab. 51, 1993 (2023).
  59. P. L. Krapivsky, Simple evolving random graphs, arXiv:2312.02952  (2023).
  60. I. Oseledets and E. Tyrtyshnikov, TT-cross approximation for multidimensional arrays, Linear Alg. Appl. 432, 70 (2010).
  61. J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mathematics of computation 19, 297 (1965).
  62. M. H. Lee, On the validity of the coagulation equation and the nature of runaway growth, Icarus 143, 74 (2000).
  63. R. R. Dyachenko, S. A. Matveev, and P. L. Krapivsky, Finite-size effects in addition and chipping processes, Phys. Rev. E 108, 044119 (2023).

Summary

We haven't generated a summary for this paper yet.