Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CAMO: Correlation-Aware Mask Optimization with Modulated Reinforcement Learning (2404.00980v1)

Published 1 Apr 2024 in cs.CV and cs.AR

Abstract: Optical proximity correction (OPC) is a vital step to ensure printability in modern VLSI manufacturing. Various OPC approaches based on machine learning have been proposed to pursue performance and efficiency, which are typically data-driven and hardly involve any particular considerations of the OPC problem, leading to potential performance or efficiency bottlenecks. In this paper, we propose CAMO, a reinforcement learning-based OPC system that specifically integrates important principles of the OPC problem. CAMO explicitly involves the spatial correlation among the movements of neighboring segments and an OPC-inspired modulation for movement action selection. Experiments are conducted on both via layer patterns and metal layer patterns. The results demonstrate that CAMO outperforms state-of-the-art OPC engines from both academia and industry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. O. W. Otto, J. G. Garofalo, K. K. Low et al., “Automated optical proximity correction: a rules-based approach,” in Proc. SPIE, 1994, pp. 278–293.
  2. J. Kuang, W.-K. Chow, and E. F. Y. Young, “A robust approach for process variation aware mask optimization,” in Proc. DATE, 2015, pp. 1591–1594.
  3. Y.-H. Su, Y.-C. Huang, L.-C. Tsai, Y.-W. Chang, and S. Banerjee, “Fast lithographic mask optimization considering process variation,” IEEE TCAD, vol. 35, no. 8, pp. 1345–1357, 2016.
  4. A. Awad, A. Takahashi, S. Tanaka, and C. Kodama, “A fast process variation and pattern fidelity aware mask optimization algorithm,” in Proc. ICCAD, 2014, pp. 238–245.
  5. A. Poonawala and P. Milanfar, “Mask design for optical microlithography–an inverse imaging problem,” IEEE TIP, vol. 16, no. 3, pp. 774–788, 2007.
  6. J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with process window aware inverse correction,” in Proc. DAC, 2014, pp. 52:1–52:6.
  7. T. Matsunawa, B. Yu, and D. Z. Pan, “Optical proximity correction with hierarchical bayes model,” in Proc. SPIE, vol. 9426, 2015.
  8. A. Gu and A. Zakhor, “Optical proximity correction with linear regression,” IEEE TSM, vol. 21, no. 2, pp. 263–271, 2008.
  9. H. Yang, S. Li, Z. Deng, Y. Ma, B. Yu, and E. F. Y. Young, “GAN-OPC: Mask optimization with lithography-guided generative adversarial nets,” IEEE TCAD, 2020.
  10. G. Chen, W. Chen, Y. Ma, H. Yang, and B. Yu, “Damo: Deep agile mask optimization for full chip scale,” in Proc. ICCAD, 2020, pp. 1–9.
  11. H.-C. Shao, C.-Y. Peng, J.-R. Wu, C.-W. Lin, S.-Y. Fang, P.-Y. Tsai, and Y.-H. Liu, “From ic layout to die photograph: A cnn-based data-driven approach,” IEEE TCAD, vol. 40, no. 5, pp. 957–970, 2020.
  12. X. Liang, Y. Ouyang, H. Yang, B. Yu, and Y. Ma, “Rl-opc: Mask optimization with deep reinforcement learning,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.
  13. Q. Wang, B. Jiang, M. D. Wong, and E. F. Young, “A2-ilt: Gpu accelerated ilt with spatial attention mechanism,” in Proc. DAC, 2022, pp. 967–972.
  14. R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.
  15. H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Detecting multi-layer layout hotspots with adaptive squish patterns,” in Proc. ASPDAC, 2019, pp. 299–304.
  16. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
  17. K. Liu, H. Yang, Y. Ma, B. Tan, B. Yu, E. F. Young, R. Karri, and S. Garg, “Adversarial perturbation attacks on ml-based cad: A case study on cnn-based lithographic hotspot detection,” ACM TODAES, vol. 25, no. 5, pp. 1–31, 2020.
  18. “The OpenROAD Project,” https://theopenroadproject.org/.
  19. S. Banerjee, Z. Li, and S. R. Nassif, “ICCAD-2013 CAD contest in mask optimization and benchmark suite,” in Proc. ICCAD, 2013, pp. 271–274.
  20. “Calibre Design Solutions,” https://eda.sw.siemens.com/en-US/ic/calibre-design/.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com