Quantum Metrology of Absorption and Gain Parameters using Two-Mode Bright Squeezed Light (2404.00871v1)
Abstract: Absorption and gain processes are fundamental to any light-matter interaction and a precise measurement of these parameters is important for various scientific and technological applications. Quantum probes, specifically the squeezed states have proved very successful, particularly in the applications that deal with phase shift and force measurements. In this paper, we focus on improving the sensitivity of the estimation of the photon loss coefficient of a weakly absorbing medium as well as the estimation of the gain parameter using a two-mode bright squeezed state. The generation of this state combines the advantage of a coherent beam for its large photon number with the quantum properties of the two-mode squeezing operation in an optical parametric amplifier. We present two measurement schemes: balanced photodetection and time-reversed metrology, both utilizing two-mode bright squeezed light. The maximum quantum advantage we can achieve using two-mode bright squeezed light is 3.7 times for the absorption parameter $\alpha = 0.05$ and 8.4 times for $\alpha = 0.01$ as compared to using only the coherent state. Similarly, the maximum quantum advantage for the estimation of optical gain is found around 2.81 times for the gain coefficient $G=1.05$ and around 6.28 times for $G=1.01$. We discuss the significance of using one measurement scheme over the other under different squeezing conditions. We compare our results with the Cram\'er-Rao bound for a two-mode bright squeezed state to assess the quality of the proposed methodologies.
- M. Barbieri, “Optical quantum metrology,” PRX Quantum, vol. 3, p. 010202, Jan 2022.
- B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, “Quantum sensing with squeezed light,” Acs Photonics, vol. 6, no. 6, pp. 1307–1318, 2019.
- B. E. Anderson, P. Gupta, B. L. Schmittberger, T. Horrom, C. Hermann-Avigliano, K. M. Jones, and P. D. Lett, “Phase sensing beyond the standard quantum limit with a variation on the su (1, 1) interferometer,” Optica, vol. 4, no. 7, pp. 752–756, 2017.
- M. D. Lang and C. M. Caves, “Optimal quantum-enhanced interferometry using a laser power source,” Phys. Rev. Lett., vol. 111, p. 173601, Oct 2013.
- C. M. Caves, “Quantum-mechanical noise in an interferometer,” Physical Review D, vol. 23, no. 8, p. 1693, 1981.
- J. Qin, Y.-H. Deng, H.-S. Zhong, and et al., “Unconditional and Robust Quantum Metrological Advantage beyond N00N States,” Phys. Rev. Lett., vol. 130, p. 070801, 2023.
- R. Pooser, N. Savino, E. Batson, J. Beckey, J. Garcia, and B. Lawrie, “Truncated nonlinear interferometry for quantum-enhanced atomic force microscopy,” Physical Review Letters, vol. 124, no. 23, p. 230504, 2020.
- M. G. Genoni, M. G. A. Paris, G. Adesso, H. Nha, P. L. Knight, and M. S. Kim, “Optimal estimation of joint parameters in phase space,” Phys. Rev. A, vol. 87, p. 012107, Jan 2013.
- T. Li, F. Li, X. Liu, V. V. Yakovlev, and G. S. Agarwal, “Quantum-enhanced stimulated brillouin scattering spectroscopy and imaging,” Optica, vol. 9, no. 8, pp. 959–964, 2022.
- C. A. Casacio, L. S. Madsen, A. Terrasson, M. Waleed, K. Barnscheidt, B. Hage, M. A. Taylor, and W. P. Bowen, “Quantum-enhanced nonlinear microscopy,” Nature, vol. 594, no. 7862, pp. 201–206, 2021.
- R. C. Pooser and B. Lawrie, “Plasmonic trace sensing below the photon shot noise limit,” ACS Photonics, vol. 3, no. 1, pp. 8–13, 2016.
- R. B. de Andrade, H. Kerdoncuff, K. Berg-Sørensen, T. Gehring, M. Lassen, and U. L. Andersen, “Quantum-enhanced continuous-wave stimulated raman scattering spectroscopy,” Optica, vol. 7, no. 5, pp. 470–475, 2020.
- G. Triginer Garces, H. M. Chrzanowski, S. Daryanoosh, V. Thiel, A. L. Marchant, R. B. Patel, P. C. Humphreys, A. Datta, and I. A. Walmsley, “Quantum-enhanced stimulated emission detection for label-free microscopy,” Applied Physics Letters, vol. 117, no. 2, 2020.
- B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, and U. L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica, vol. 5, no. 7, pp. 850–856, 2018.
- W. N. Plick, J. P. Dowling, and G. S. Agarwal, “Coherent-light-boosted, sub-shot noise, quantum interferometry,” New Journal of Physics, vol. 12, p. 083014, 2010.
- C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Physical Review A, vol. 61, no. 4, p. 043811, 2000.
- L. Pezzé and A. Smerzi, “Mach-zehnder interferometry at the heisenberg limit with coherent and squeezed-vacuum light,” Physical review letters, vol. 100, no. 7, p. 073601, 2008.
- B. Yurke, S. L. McCall, and J. R. Klauder, “Su(2) and su(1,1) interferometers,” Phys. Rev. A, vol. 33, p. 4033, 1986.
- Z. Y. Ou and X. Li, “Quantum su(1,1) interferometers: Basic principles and applications,” APL Photonics, vol. 5, p. 080902, 2020.
- C. M. Caves, “Reframing su (1, 1) interferometry,” Advanced Quantum Technologies, vol. 3, no. 11, p. 1900138, 2020.
- G. S. Agarwal and L. Davidovich, “Quantifying quantum-amplified metrology via fisher information,” Phys. Rev. Research, vol. 4, p. L012014, 2022.
- S. Colombo, E. Pedrozo-Peñafiel, A. F. Adiyatullin, et al., “Time-reversal-based quantum metrology with many-body entangled states,” Nat. Phys., vol. 18, p. 925, 2022.
- S. C. Burd, R. Srinivas, J. J. Bollinger, et al., “Quantum amplification of mechanical oscillator motion,” Science, vol. 364, p. 1163, 2019.
- D. Linnemann, H. Strobel, W. Muessel, et al., “Quantum-enhanced sensing based on time reversal of nonlinear dynamics,” Phys. Rev. Lett., vol. 117, p. 013001, 2016.
- J. Xin, X.-M. Lu, X. Li, and G. Li, “Optimal phase point for su (1, 1) interferometer,” JOSA B, vol. 36, no. 10, pp. 2824–2833, 2019.
- N. Huo, L. Cui, Y. Zhang, et al., “Measurement-dependent erasure of distinguishability for the observation of interference in an unbalanced su(1,1) interferometer,” PRX Quantum, vol. 3, p. 020313, 2022.
- Z. Ou, “Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer,” Physical Review A, vol. 85, no. 2, p. 023815, 2012.
- Y. Liu, N. Huo, J. Li, et al., “Optimum quantum resource distribution for phase measurement and quantum information tapping in a dual-beam su(1,1) interferometer,” Opt. Express, vol. 27, p. 11292, 2019.
- S. Liu, Y. Lou, J. Xin, and J. Jing, “Quantum enhancement of phase sensitivity for the bright-seeded su (1, 1) interferometer with direct intensity detection,” Physical Review Applied, vol. 10, no. 6, p. 064046, 2018.
- B. E. Anderson, B. L. Schmittberger, P. Gupta, K. M. Jones, and P. D. Lett, “Optimal phase measurements with bright- and vacuum-seeded su(1,1) interferometers,” Phys. Rev. A, vol. 95, p. 063843, Jun 2017.
- M. Santandrea, K.-H. Luo, M. Stefszky, J. Sperling, H. Herrmann, B. Brecht, and C. Silberhorn, “Lossy su (1, 1) interferometers in the single-photon-pair regime,” Quantum Science and Technology, vol. 8, no. 2, p. 025020, 2023.
- L. Tian, W. Yao, Y. Wu, Q. Wang, H. Shen, Y. Zheng, and K. Peng, “Loss-tolerant and quantum-enhanced interferometer by reversed squeezing processes,” Optics Letters, vol. 48, no. 15, pp. 3909–3912, 2023.
- J. Xin, “Phase sensitivity enhancement for the su (1, 1) interferometer using photon level operations,” Optics Express, vol. 29, no. 26, pp. 43970–43984, 2021.
- A. M. Marino, N. V. Corzo Trejo, and P. D. Lett, “Effect of losses on the performance of an su(1,1) interferometer,” Phys. Rev. A, vol. 86, p. 023844, 2012.
- J. Xin, H. Wang, and J. Jing, “The effect of losses on the quantum-noise cancellation in the su(1,1) interferometer,” Appl. Phys. Lett., vol. 109, p. 051107, 2016.
- Y. Liu, J. Li, L. Cui, et al., “Loss-tolerant quantum dense metrology with su(1,1) interferometer,” Opt. Express, vol. 26, p. 27705, 2018.
- M. Manceau, G. Leuchs, F. Khalili, and M. Chekhova, “Detection loss tolerant supersensitive phase measurement with an su (1, 1) interferometer,” Physical review letters, vol. 119, no. 22, p. 223604, 2017.
- J. Wang, L. Davidovich, and G. S. Agarwal, “Quantum sensing of open systems: Estimation of damping constants and temperature,” Phys. Rev. Research, vol. 2, p. 033389, 2020.
- J. Wang, R. L. de Matos Filho, G. S. Agarwal, and L. Davidovich, “Quantum advantage of time-reversed ancilla-based metrology of absorption parameters,” Physical Review Research, vol. 6, no. 1, p. 013034, 2024.
- R. Nair, “Quantum-limited loss sensing: Multiparameter estimation and bures distance between loss channels,” Phys. Rev. Lett., vol. 121, p. 230801, 2018.
- R. Nair, G. Y. Tham, and M. Gu, “Optimal gain sensing of quantum-limited phase-insensitive amplifiers,” Phys. Rev. Lett., vol. 128, p. 180506, May 2022.
- P.-A. Moreau, J. Sabines-Chesterking, R. Whittaker, et al., “Demonstrating an absolute quantum advantage in direct absorption measurement,” Sci. Rep., vol. 7, p. 6256, 2017.
- E. Losero, I. Ruo-Berchera, A. Meda, et al., “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep., vol. 8, p. 7431, 2018.
- A. Monras and F. Illuminati, “Measurement of damping and temperature: Precision bounds in gaussian dissipative channels,” Phys. Rev. A, vol. 83, p. 012315, 2011.
- Cambridge University Press, 2012.
- O. Pinel, J. Fade, D. Braun, et al., “Ultimate sensitivity of precision measurements with intense gaussian quantum light: A multimodal approach,” Phys. Rev. A, vol. 85, p. 010101, 2012.
- O. Pinel, P. Jian, N. Treps, et al., “Quantum parameter estimation using general single-mode gaussian states,” Phys. Rev. A, vol. 88, p. 040102, 2013.
- Y. Gao and H. Lee, “Bounds on quantum multiple-parameter estimation with gaussian state,” Eur. Phys. J. D, vol. 68, p. 1, 2014.
- N. Friis, M. Skotiniotis, I. Fuentes, et al., “Heisenberg scaling in gaussian quantum metrology,” Phys. Rev. A, vol. 92, p. 022106, 2015.
- D. Šafránek, A. R. Lee, and I. Fuentes, “Quantum parameter estimation using multi-mode gaussian states,” New J. Phys, vol. 17, p. 073016, 2015.
- L. Banchi, S. L. Braunstein, and S. Pirandola, “Quantum fidelity for arbitrary gaussian states,” Phys. Rev. Lett., vol. 115, p. 260501, 2015.
- P. Marian and T. A. Marian, “Quantum fisher information on two manifolds of two-mode gaussian states,” Phys. Rev. A, vol. 93, p. 052330, 2016.
- R. Nichols, P. Liuzzo-Scorpo, P. A. Knott, et al., “Multiparameter gaussian quantum metrology,” Phys. Rev. A, vol. 98, p. 012114, 2018.
- D. Šafránek, “Estimation of gaussian quantum states,” Journal of Physics A: Mathematical and Theoretical, vol. 52, no. 3, p. 035304, 2018.
- G. Agarwal, “Wigner-function description of quantum noise in interferometers,” J. Mod. Opt., vol. 34, p. 909, 1987.
- M. Aspachs, G. Adesso, and I. Fuentes, “Optimal quantum estimation of the unruh-hawking effect,” Phys. Rev. Lett., vol. 105, p. 151301, Oct 2010.
- Z. Xu, K. Oguchi, Y. Taguchi, S. Takahashi, Y. Sano, T. Mizuguchi, K. Katoh, and Y. Ozeki, “Quantum-enhanced stimulated raman scattering microscopy in a high-power regime,” Optics Letters, vol. 47, no. 22, pp. 5829–5832, 2022.