Metarobotics for Industry and Society: Vision, Technologies, and Opportunities (2404.00797v2)
Abstract: Metarobotics aims to combine next generation wireless communication, multi-sense immersion, and collective intelligence to provide a pervasive, itinerant, and non-invasive access and interaction with distant robotized applications. Industry and society are expected to benefit from these functionalities. For instance, robot programmers will no longer travel worldwide to plan and test robot motions, even collaboratively. Instead, they will have a personalized access to robots and their environments from anywhere, thus spending more time with family and friends. Students enrolled in robotics courses will be taught under authentic industrial conditions in real-time. This paper describes objectives of Metarobotics in society, industry, and in-between. It identifies and surveys technologies likely to enable their completion and provides an architecture to put forward the interplay of key components of Metarobotics. Potentials for self-determination, self-efficacy, and work-life-flexibility in robotics-related applications in Society 5.0, Industry 4.0, and Industry 5.0 are outlined.
- V. Sunder M., A. Prashar, G. L. Tortorella, and V. R. Sreedharan, “Role of organizational learning on industry 4.0 awareness and adoption for business performance improvement,” IEEE Transactions on Engineering Management, pp. 1–14, 2023.
- W. Xian, K. Yu, F. Han, L. Fang, D. He, and Q.-L. Han, “Advanced manufacturing in industry 5.0: A survey of key enabling technologies and future trends,” IEEE Transactions on Industrial Informatics, pp. 1–15, 2023.
- E. G. Carayannis, R. Canestrino, and P. Magliocca, “From the dark side of industry 4.0 to society 5.0: Looking “beyond the box” to developing human-centric innovation ecosystems,” IEEE Transactions on Engineering Management, pp. 1–17, 2023.
- J. Wilson, “Generation z’s adoption of new technology spells a new era for entertainment,” https://www.forbes.com/sites/joshwilson/2022/05/26/generation-zs-adoption-of-new-technology-spells-a-new-era-for-entertainment/?sh=7ac824a56c0a, Forbes, May 2022, last accessed: 07.12.2023.
- D. Mourtzis, J. Angelopoulos, and N. Panopoulos, “Closed-loop robotic arm manipulation based on mixed reality,” Applied Sciences, vol. 12, no. 6, p. 2972, 2022.
- N. Barker and C. Jewitt, “Collaborative robots and tangled passages of tactile-affects,” J. Hum.-Robot Interact., vol. 12, no. 2, mar 2023. [Online]. Available: https://doi.org/10.1145/3534090
- E. H. Østergaard, “Welcome to industry 5.0,the “human touch” revolution is now under way,” Universal Robots, vol. 5, p. 2020, 2019.
- E. C. Strinati and S. Barbarossa, “6g networks: Beyond shannon towards semantic and goal-oriented communications,” Computer Networks, vol. 190, p. 107930, 2021.
- H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, “6g wireless systems: Vision, requirements, challenges, insights, and opportunities,” Proceedings of the IEEE, vol. 109, no. 7, pp. 1166–1199, 2021.
- Y. Shi, W. Shen, L. Wang, F. Longo, L. Nicoletti, and A. Padovano, “A cognitive digital twins framework for human-robot collaboration,” Procedia Computer Science, vol. 200, pp. 1867–1874, 2022.
- R. Petkova, V. Poulkov, A. Manolova, and K. Tonchev, “Challenges in implementing low-latency holographic-type communication systems,” Sensors, vol. 22, no. 24, p. 9617, 2022.
- F. Semeraro, A. Griffiths, and A. Cangelosi, “Human–robot collaboration and machine learning: A systematic review of recent research,” Robotics and Computer-Integrated Manufacturing, vol. 79, p. 102432, 2023.
- M. Selvaggio, M. Cognetti, S. Nikolaidis, S. Ivaldi, and B. Siciliano, “Autonomy in physical human-robot interaction: A brief survey,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7989–7996, 2021.
- M. Gagné, S. K. Parker, M. A. Griffin, P. D. Dunlop, C. Knight, F. E. Klonek, and X. Parent-Rocheleau, “Understanding and shaping the future of work with self-determination theory,” Nature Reviews Psychology, vol. 1, no. 7, pp. 378–392, 2022.
- C. K. Rath, A. K. Mandal, and A. Sarkar, “Microservice based scalable iot architecture for device interoperability,” Computer Standards & Interfaces, vol. 84, p. 103697, 2023.
- P. Jain, A. Gupta, N. Kumar, and M. Guizani, “Dynamic and efficient spectrum utilization for 6g with thz, mmwave, and rf band,” IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. –, 2023.
- M. Mahmoud, S. Rizou, A. S. Panayides, N. V. Kantartzis, G. K. Karagiannidis, P. I. Lazaridis, and Z. D. Zaharis, “A survey on optimizing mobile delivery of 360° videos: Edge caching and multicasting,” IEEE Access, 2023.
- I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet, “Terahertz band communication: An old problem revisited and research directions for the next decade,” IEEE Transactions on Communications, 2022.
- H. Chen, H. Sarieddeen, T. Ballal, H. Wymeersch, M.-S. Alouini, and T. Y. Al-Naffouri, “A tutorial on terahertz-band localization for 6g communication systems,” IEEE Communications Surveys & Tutorials, vol. 24, no. 3, pp. 1780–1815, 2022.
- H. Wymeersch, J. He, B. Denis, A. Clemente, and M. Juntti, “Radio localization and mapping with reconfigurable intelligent surfaces: Challenges, opportunities, and research directions,” IEEE Vehicular Technology Magazine, vol. 15, no. 4, pp. 52–61, 2020.
- C. Keroglou, I. Kansizoglou, P. Michailidis, K. M. Oikonomou, I. T. Papapetros, P. Dragkola, I. T. Michailidis, A. Gasteratos, E. B. Kosmatopoulos, and G. C. Sirakoulis, “A survey on technical challenges of assistive robotics for elder people in domestic environments: The aspida concept,” IEEE Transactions on Medical Robotics and Bionics, 2023.
- H. Abdollahi, M. Mahoor, R. Zandie, J. Sewierski, and S. Qualls, “Artificial emotional intelligence in socially assistive robots for older adults: a pilot study,” IEEE Transactions on Affective Computing, 2022.
- B. Yang, J. Huang, X. Chen, X. Li, and Y. Hasegawa, “Natural grasp intention recognition based on gaze in human–robot interaction,” IEEE Journal of Biomedical and Health Informatics, pp. –, 2023.
- S. Marcos-Pablos and F. J. García-Peñalvo, “Emotional intelligence in robotics: a scoping review,” in New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence: The DITTET Collection 1. Springer, 2022, pp. 66–75.
- O. Korn, N. Akalin, and R. Gouveia, “Understanding cultural preferences for social robots: a study in german and arab communities,” ACM Transactions on Human-Robot Interaction (THRI), 2021.
- S. Fazelpour and M. De-Arteaga, “Diversity in sociotechnical machine learning systems,” Big Data & Society, 2022.
- Z. Gong, P. Zhong, and W. Hu, “Diversity in machine learning,” Ieee Access, vol. 7, pp. 64 323–64 350, 2019.
- Z.-Y. Huang, C.-C. Chiang, J.-H. Chen, Y.-C. Chen, H.-L. Chung, Y.-P. Cai, and H.-C. Hsu, “A study on computer vision for facial emotion recognition,” Scientific Reports, vol. 13, no. 1, p. 8425, 2023.
- X. Li, Y. Tian, P. Ye, H. Duan, and F.-Y. Wang, “A novel scenarios engineering methodology for foundation models in metaverse,” IEEE Transactions on Systems, Man, and Cybern.: Systems, 2022.
- S. Yu, J. P. Muñoz, and A. Jannesari, “Federated foundation models: Privacy-preserving and collaborative learning for large models,” ArXiv, vol. abs/2305.11414, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:258823148
- Y. Li, W. Liang, J. Li, X. Cheng, D. Yu, A. Y. Zomaya, and S. Guo, “Energy-aware, device-to-device assisted federated learning in edge computing,” IEEE Transactions on Par. and Distributed Systems, 2023.
- N. Sharma, B. Meglicki, and C. Liu, “Intuitive virtual reality human-robot interface with volumetric tele-presence, visual haptics and audio,” 2nd Workshop toward robot avatars, IEEE international conference on robotics and automation, ICRA, UK, London, pp. 1–3, 2023.
- A. Abdelraouf, M. Abdel-Aty, and Y. Wu, “Using vision transformers for spatial-context-aware rain and road surface condition detection on freeways,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18 546–18 556, 2022.
- L. Hoyer, D. Dai, H. Wang, and L. Van Gool, “Mic: Masked image consistency for context-enhanced domain adaptation,” in Proceedings of the IEEE/CVF Conference on Comp. Vision and Pat. Recogn., 2023.
- C. J. Conti, A. S. Varde, and W. Wang, “Human-robot collaboration with commonsense reasoning in smart manufacturing contexts,” IEEE Transactions on Automation Science and Engineering, 2022.
- E. E. Kossek, M. B. Perrigino, and B. A. Lautsch, “Work-life flexibility policies from a boundary control and implementation perspective: a review and research framework,” Journal of Management, 2023.
- S. Zeng, Z. Li, H. Yu, Z. Zhang, L. Luo, B. Li, and D. Niyato, “Hfedms: Heterogeneous federated learning with memorable data semantics in industrial metaverse,” IEEE Transactions on Cloud Computing, 2023.
- Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, “Transfer learning in deep reinforcement learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
- J. Hu, J. Whitman, M. Travers, and H. Choset, “Modular robot design optimization with generative adversarial networks,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022.
- J. Whitman, M. Travers, and H. Choset, “Learning modular robot control policies,” IEEE Transactions on Robotics, 2023.
- M. Thosar, C. A. Mueller, G. Jäger, J. Schleiss, N. Pulugu, R. Mallikarjun Chennaboina, S. V. Rao Jeevangekar, A. Birk, M. Pfingsthorn, and S. Zug, “From multi-modal property dataset to robot-centric conceptual knowledge about household objects,” Frontiers in Rob. and AI, 2021.
- W. Liu, D. Bansal, A. A. Daruna, and S. Chernova, “Learning instance-level n-ary semantic knowledge at scale for robots operating in everyday environments.” in Robotics: Science and Systems, 2021.
- C. Ben, F. Spencer, S. Mike, V. S. Thiago, and A. B. M. Lima, “What is holoportation?” https://www.microsoft.com/en-us/research/project/holoportation-3/, Microsoft, May 2023, last accessed: 07-12-2023.
- Y. Wang, W. Huang, B. Fang, F. Sun, and C. Li, “Elastic tactile simulation towards tactile-visual perception,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 2690–2698.
- Z. Sun, M. Zhu, X. Shan, and C. Lee, “Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions,” Nature communications, vol. 13, no. 1, 2022.
- K. Takahashi and J. Tan, “Deep visuo-tactile learning: Estimation of tactile properties from images,” in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
- X. Zhu, Z. Li, X. Wang, X. Jiang, P. Sun, X. Wang, Y. Xiao, and N. J. Yuan, “Multi-modal knowledge graph construction and application: A survey,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–20, 2022.
- B. Otto and A. Burmann, “Europäische dateninfrastrukturen: Ansätze und werkzeuge zur nutzung von daten zum wohl von individuum und gemeinschaft,” Informatik Spektrum, vol. 44, pp. 283–291, 2021.
- T. K. Rodrigues, K. Suto, and N. Kato, “Edge cloud server deployment with transmission power control through machine learning for 6g internet of things,” IEEE Transactions on Emerging Topics in Computing, 2019.
- C. Dou, N. Huang, Y. Wu, and T. Q. Quek, “Energy-efficient hybrid noma-fdma assisted distributed two-tier edge-cloudlet multi-access computation offloading,” IEEE Trans. on Green Comm. and Netw., 2023.
- A. Marshall, K. M. Yap, W. Yu et al., “Providing qos for networked peers in distributed haptic virtual environments,” Advances in Multimedia, vol. 2008, 2008.
- Y. Xu, L. Huang, T. Zhao, Y. Fang, and L. Lin, “A timestamp-independent haptic–visual synchronization method for haptic-based interaction system,” Sensors, vol. 22, no. 15, p. 5502, 2022.
- S. Mondal, L. Ruan, M. Maier, D. Larrabeiti, G. Das, and E. Wong, “Enabling remote human-to-machine applications with ai-enhanced servers over access networks,” IEEE Open Journal of the Communications Society, vol. 2, pp. 889–899, July 2020.
- L. Ruan, M. P. I. Dias, and E. Wong, “Achieving low-latency human-to-machine (h2m) applications: An understanding of h2m traffic for ai-facilitated bandwidth allocation,” IEEE Internet of things journal, 2021.
- G. P. Fettweis and H. Boche, “6g: the personal tactile internet—and open questions for information theory,” IEEE BITS the Information Theory Magazine, vol. 1, no. 1, pp. 71–82, 2021.
- Z. Hou, C. She, Y. Li, D. Niyato, M. Dohler, and B. Vucetic, “Intelligent communications for tactile internet in 6g: Requirements, technologies, and challenges,” IEEE Com. Magazine, vol. 59, no. 12, pp. 82–88, 2021.
- L. Zhao, G. Zhou, G. Zheng, I. Chih-Lin, X. You, and L. Hanzo, “Open-source-defined multi-access edge computing for 6g: Opportunities and challenges,” IEEE Access, 2021.
- K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-Aparicio, “Routenet: Leveraging graph neural networks for network modeling and optimization in sdn,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.
- T. Mortlock, D. Muthirayan, S.-Y. Yu, P. P. Khargonekar, and M. Abdullah Al Faruque, “Graph learning for cognitive digital twins in manufacturing systems,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 1, pp. 34–45, 2022.
- A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, and H. S. Koppula, “Robobrain: Large-scale knowledge engine for robots,” CoRR, vol. abs/1412.0691, 2014.
- M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of relational machine learning for knowledge graphs,” Proceedings of the IEEE, vol. 104, no. 1, pp. 11–33, 2015.
- W. Kinsner, “Digital twins for personalized education and lifelong learning,” in IEEE Canadian Conf. on Elect. and Comp. Eng., 2021.
- X. Chen, M. Chen, W. Shi, Y. Sun, and C. Zaniolo, “Embedding uncertain knowledge graphs,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 3363–3370.
- S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degtyarev, D. Kim, P. L. Davidson, S. Khamis, M. Dou et al., “Holoportation: Virtual 3d teleportation in real-time,” in Proc. of 29th sympos. on user interface software and technology, 2016, pp. 741–754.
- S. F. Langa, M. Montagud, G. Cernigliaro, and D. R. Rivera, “Multiparty holomeetings: Toward a new era of low-cost volumetric holographic meetings in virtual reality,” Ieee Access, 2022.
- I. Viola and P. Cesar, “Chapter 15 - volumetric video streaming: Current approaches and implementations,” pp. 425–443, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780323917551000213
- M. Montagud, J. Li, G. Cernigliaro, A. El Ali, S. Fernández, and P. Cesar, “Towards socialvr: evaluating a novel technology for watching videos together,” Virtual Reality, 2022.
- L. He, K. Liu, Z. He, and L. Cao, “Three-dimensional holographic communication system for the metaverse,” Optics Communicat., 2023.
- M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-latency and ultra-reliable virtual reality,” IEEE Network, 2018.
- H. Ren and P. Ben-Tzvi, “Learning inverse kinematics and dynamics of a robotic manipulator using generative adversarial networks,” Robotics and Autonomous Systems, vol. 124, p. 103386, 2020.
- NVIDIA, “Nvidia omniverse - the platform for connecting and developing openusd applications.” https://www.nvidia.com/en-us/omniverse/, NVIDIA, Aug. 2023, last accessed: 07-12-2023.
- NVIDIA and BMW, “Omniverse at bmw - youtube video,” https://www.youtube.com/watch?v=6-DaWgg4zF8, NVIDIA, 2023, last accessed: 07-12-2023.
- M. L. Dag Lindbo, German Ceballos, “Next-generation simulation technology to accelerate the 5g journey,” https://www.ericsson.com/en/blog/2021/4/5g-simulation-omniverse-platform, Ericsson, Apr. 2021, last accessed: 07-12-2023.
- F.-Y. Wang, R. Qin, X. Wang, and B. Hu, “Metasocieties in metaverse: Metaeconomics and metamanagement for metaenterprises and metacities,” IEEE Transactions on Computational Social Systems, 2022.
- I. Technical Committee and J. S. . I. . 35.040.40, “Iso/iec 23005-1:2020 information technology media context and control part 1: Architecture,” https://www.iso.org/standard/73581.html, ISO Technical Committee ISO/IEC JTC 1/SC 29 ICS : 35.040.40, 2020, last accessed: 07-12-2023.
- J. Leng, X. Zhu, Z. Huang, K. Xu, Z. Liu, Q. Liu, and X. Chen, “Manuchain ii: Blockchained smart contract system as the digital twin of decentralized autonomous manufacturing toward resilience in industry 5.0,” IEEE Transactions on Systems, Man, and Cybernetics, 2023.
- S. Ghirmai, D. Mebrahtom, M. Aloqaily, M. Guizani, and M. Debbah, “Self-sovereign identity for trust and interoperability in the metaverse,” in 2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing. IEEE, 2022, pp. 2468–2475.
- G. Xiong, T. S. Tamir, Z. Shen, X. Shang, H. Wu, and F.-Y. Wang, “A survey on social manufacturing: A paradigm shift for smart prosumers,” IEEE Transactions on Computational Social Systems, 2022.
- U. Gustavsson, P. Frenger, C. Fager, T. Eriksson, H. Zirath, F. Dielacher, C. Studer, A. Pärssinen, R. Correia, J. N. Matos et al., “Implementation challenges and opportunities in beyond-5g and 6g communication,” IEEE Journal of Microwaves, vol. 1, no. 1, pp. 86–100, 2021.