Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection (2404.00694v1)

Published 31 Mar 2024 in cs.CV

Abstract: Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications, particularly in intricate scenarios where conventional RGB-based approaches fall short. Despite the considerable progress in HSOD method advancements, two critical challenges require immediate attention. Firstly, existing hyperspectral data dimension reduction techniques incur a loss of spectral information, which adversely affects detection accuracy. Secondly, previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process. To address these challenges, we propose a novel approach termed the Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral Encoding process and a Mixed Spectral-Spatial Transformer (MSST) feature extraction network. The encoding process utilizes knowledge distillation to construct a lightweight autoencoder for dimension reduction, striking a balance between robust encoding capabilities and low computational costs. The MSST extracts spectral-spatial features through multiple attention head groups, collaboratively enhancing its resistance to intricate scenarios. Moreover, we have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field and meet the fundamental data requirements of deep network training. Extensive experiments demonstrate that our proposed DMSSN achieves state-of-the-art performance on multiple datasets. We will soon make the code and dataset publicly available on https://github.com/anonymous0519/HSOD-BIT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. G. Li, Z. Liu, X. Zhang, and W. Lin, “Lightweight salient object detection in optical remote-sensing images via semantic matching and edge alignment,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–11, 2023.
  2. N. M. Nasrabadi, “Hyperspectral target detection: An overview of current and future challenges,” IEEE Signal Processing Magazine, vol. 31, no. 1, pp. 34–44, 2013.
  3. Z. Gao, Y. Zhao, L. R. Khot, G.-A. Hoheisel, and Q. Zhang, “Optical sensing for early spring freeze related blueberry bud damage detection: Hyperspectral imaging for salient spectral wavelengths identification,” Computers and Electronics in Agriculture, vol. 167, p. 105025, 2019.
  4. Z. Wang, J. Guo, C. Zhang, and B. Wang, “Multiscale feature enhancement network for salient object detection in optical remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–19, 2022.
  5. Q. Zheng, L. Zheng, Y. Bai, H. Liu, J. Deng, and Y. Li, “Boundary-aware network with two-stage partial decoders for salient object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–13, 2023.
  6. J. Li, J. Su, C. Xia, and Y. Tian, “Distortion-adaptive salient object detection in 360 omnidirectional images,” IEEE Journal of Selected Topics in Signal Processing, vol. 14, no. 1, pp. 38–48, 2019.
  7. Z. Wu, H. Su, X. Tao, L. Han, M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, “Hyperspectral anomaly detection with relaxed collaborative representation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–17, 2022.
  8. L. Zhang, Y. Zhang, H. Yan, Y. Gao, and W. Wei, “Salient object detection in hyperspectral imagery using multi-scale spectral-spatial gradient,” Neurocomputing, vol. 291, pp. 215–225, 2018.
  9. Y. Cai, Z. Zhang, Z. Cai, X. Liu, and X. Jiang, “Hypergraph-structured autoencoder for unsupervised and semisupervised classification of hyperspectral image,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2021.
  10. C. Yu, S. Zhou, M. Song, B. Gong, E. Zhao, and C.-I. Chang, “Unsupervised hyperspectral band selection via hybrid graph convolutional network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  11. P. Zhou, J. Han, G. Cheng, and B. Zhang, “Learning compact and discriminative stacked autoencoder for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 7, pp. 4823–4833, 2019.
  12. N. Imamoglu, Y. Oishi, X. Zhang, G. Ding, Y. Fang, T. Kouyama, and R. Nakamura, “Hyperspectral image dataset for benchmarking on salient object detection,” in 2018 Tenth international conference on quality of multimedia experience (qoMEX).   IEEE, 2018, pp. 1–3.
  13. L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.
  14. S. Zhao, Z. Wen, Q. Qi, K.-M. Lam, and J. Shen, “Learning fine-grained information with capsule-wise attention for salient object detection,” IEEE Transactions on Multimedia, 2023.
  15. J. Liang, J. Zhou, X. Bai, and Y. Qian, “Salient object detection in hyperspectral imagery,” in 2013 IEEE International conference on image processing.   IEEE, 2013, pp. 2393–2397.
  16. Y. Gu, H. Xu, Y. Quan, W. Chen, and J. Zheng, “Orsi salient object detection via bidimensional attention and full-stage semantic guidance,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–13, 2023.
  17. C. Li, R. Cong, J. Hou, S. Zhang, Y. Qian, and S. Kwong, “Nested network with two-stream pyramid for salient object detection in optical remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 11, pp. 9156–9166, 2019.
  18. G. Li, Z. Liu, W. Lin, and H. Ling, “Multi-content complementation network for salient object detection in optical remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2021.
  19. N. İmamoğlu, G. Ding, Y. Fang, A. Kanezaki, T. Kouyama, and R. Nakamura, “Salient object detection on hyperspectral images using features learned from unsupervised segmentation task,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2019, pp. 2192–2196.
  20. C. Huang, T. Xu, Y. Zhang, C. Pan, J. Hao, and X. Li, “Salient object detection on hyperspectral images in wireless network using cnn and saliency optimization,” Ad Hoc Networks, vol. 112, p. 102369, 2021.
  21. K. Yang, H. Sun, C. Zou, and X. Lu, “Cross-attention spectral–spatial network for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.
  22. S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “Hybridsn: Exploring 3-d–2-d cnn feature hierarchy for hyperspectral image classification,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 2, pp. 277–281, 2019.
  23. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
  24. S. K. Roy, A. Deria, C. Shah, J. M. Haut, Q. Du, and A. Plaza, “Spectral–spatial morphological attention transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–15, 2023.
  25. X. Kang, B. Deng, P. Duan, X. Wei, and S. Li, “Self-supervised spectral–spatial transformer network for hyperspectral oil spill mapping,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–10, 2023.
  26. H. Qin, D. Zhou, T. Xu, Z. Bian, and J. Li, “Factorization vision transformer: Modeling long-range dependency with local window cost,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  27. X. He, Y. Chen, and Z. Lin, “Spatial-spectral transformer for hyperspectral image classification,” Remote Sensing, vol. 13, no. 3, p. 498, 2021.
  28. Y. Cao, J. Zhang, Q. Tian, L. Zhuo, and Q. Zhou, “Salient target detection in hyperspectral images using spectral saliency,” in 2015 IEEE China Summit and international conference on signal and information processing (chinaSIP).   IEEE, 2015, pp. 1086–1090.
  29. H. Yan, Y. Zhang, W. Wei, L. Zhang, and Y. Li, “Salient object detection in hyperspectral imagery using spectral gradient contrast,” in 2016 IEEE International geoscience and remote sensing symposium (IGARSS).   IEEE, 2016, pp. 1560–1563.
  30. Y. Liu, S. Zhang, Z. Wang, B. Zhao, and L. Zou, “Global perception network for salient object detection in remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2022.
  31. Q. Wang, Y. Liu, Z. Xiong, and Y. Yuan, “Hybrid feature aligned network for salient object detection in optical remote sensing imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2022.
  32. Q. Ren, S. Lu, J. Zhang, and R. Hu, “Salient object detection by fusing local and global contexts,” IEEE Transactions on Multimedia, vol. 23, pp. 1442–1453, 2020.
  33. J. Liang, J. Zhou, L. Tong, X. Bai, and B. Wang, “Material based salient object detection from hyperspectral images,” Pattern Recognition, vol. 76, pp. 476–490, 2018.
  34. B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep autoencoding gaussian mixture model for unsupervised anomaly detection,” in International conference on learning representations, 2018.
  35. L. Sun, G. Zhao, Y. Zheng, and Z. Wu, “Spectral–spatial feature tokenization transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2022.
  36. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117–2125.
  37. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pvt v2: Improved baselines with pyramid vision transformer,” Computational Visual Media, vol. 8, no. 3, pp. 415–424, 2022.
  38. J. Li, W. Ji, M. Zhang, Y. Piao, H. Lu, and L. Cheng, “Delving into calibrated depth for accurate rgb-d salient object detection,” International Journal of Computer Vision, vol. 131, no. 4, pp. 855–876, 2023.
  39. J. Wang, H. Jiang, Z. Yuan, M.-M. Cheng, X. Hu, and N. Zheng, “Salient object detection: A discriminative regional feature integration approach.” International Journal of Computer Vision, vol. 123, no. 2, 2017.
  40. Y.-H. Wu, Y. Liu, L. Zhang, M.-M. Cheng, and B. Ren, “Edn: Salient object detection via extremely-downsampled network,” IEEE Transactions on Image Processing, vol. 31, pp. 3125–3136, 2022.
  41. X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand, “Basnet: Boundary-aware salient object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 7479–7489.
  42. X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand, “U2-net: Going deeper with nested u-structure for salient object detection,” Pattern recognition, vol. 106, p. 107404, 2020.
  43. M. Zhuge, D.-P. Fan, N. Liu, D. Zhang, D. Xu, and L. Shao, “Salient object detection via integrity learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  44. S. Gao, W. Zhang, Y. Wang, Q. Guo, C. Zhang, Y. He, and W. Zhang, “Weakly-supervised salient object detection using point supervison,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 670–678.
  45. F. A. Kruse, A. Lefkoff, J. Boardman, K. Heidebrecht, A. Shapiro, P. Barloon, and A. Goetz, “The spectral image processing system (sips)—interactive visualization and analysis of imaging spectrometer data,” Remote sensing of environment, vol. 44, no. 2-3, pp. 145–163, 1993.
  46. W. H. Farrand and J. C. Harsanyi, “Mapping the distribution of mine tailings in the coeur d’alene river valley, idaho, through the use of a constrained energy minimization technique,” Remote Sensing of Environment, vol. 59, no. 1, pp. 64–76, 1997.
  47. Z. Zou and Z. Shi, “Hierarchical suppression method for hyperspectral target detection,” IEEE transactions on geoscience and remote sensing, vol. 54, no. 1, pp. 330–342, 2015.
  48. R. Zhao, Z. Shi, Z. Zou, and Z. Zhang, “Ensemble-based cascaded constrained energy minimization for hyperspectral target detection,” Remote Sensing, vol. 11, no. 11, p. 1310, 2019.
  49. W. Li, Q. Du, and B. Zhang, “Combined sparse and collaborative representation for hyperspectral target detection,” Pattern Recognition, vol. 48, no. 12, pp. 3904–3916, 2015.
  50. T. Cheng and B. Wang, “Decomposition model with background dictionary learning for hyperspectral target detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 1872–1884, 2021.
  51. G. Zhang, S. Zhao, W. Li, Q. Du, Q. Ran, and R. Tao, “Htd-net: A deep convolutional neural network for target detection in hyperspectral imagery,” Remote Sensing, vol. 12, no. 9, p. 1489, 2020.
  52. W. Xie, X. Zhang, Y. Li, K. Wang, and Q. Du, “Background learning based on target suppression constraint for hyperspectral target detection,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5887–5897, 2020.
  53. D. Shen, X. Ma, W. Kong, J. Liu, J. Wang, and H. Wang, “Hyperspectral target detection based on interpretable representation network,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
  54. D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot, “Spectralformer: Rethinking hyperspectral image classification with transformers,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.
  55. J. Zou, W. He, and H. Zhang, “Lessformer: Local-enhanced spectral-spatial transformer for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16, 2022.
  56. P. Yan, H. Qin, J. Wang, T. Xu, L. Song, H. Li, and J. Li, “Global-local channel attention for hyperspectral image classification,” in 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET).   IEEE, 2021, pp. 1–6.
  57. J. Li, X. Huang, and L. Tu, “Whu-ohs: A benchmark dataset for large-scale hersepctral image classification,” International Journal of Applied Earth Observation and Geoinformation, vol. 113, p. 103022, 2022.
  58. W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” Journal of Sensors, vol. 2015, pp. 1–12, 2015.
  59. Y. Li, H. Zhang, and Q. Shen, “Spectral–spatial classification of hyperspectral imagery with 3d convolutional neural network,” Remote Sensing, vol. 9, no. 1, p. 67, 2017.
  60. S. K. Roy, S. Manna, T. Song, and L. Bruzzone, “Attention-based adaptive spectral–spatial kernel resnet for hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 9, pp. 7831–7843, 2020.
  61. Z. Zheng, Y. Zhong, A. Ma, and L. Zhang, “Fpga: Fast patch-free global learning framework for fully end-to-end hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 8, pp. 5612–5626, 2020.
  62. M. E. Paoletti, J. M. Haut, R. Fernandez-Beltran, J. Plaza, A. J. Plaza, and F. Pla, “Deep pyramidal residual networks for spectral–spatial hyperspectral image classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp. 740–754, 2018.
  63. Y. Wang, X. Chen, F. Wang, M. Song, and C. Yu, “Meta-learning based hyperspectral target detection using siamese network,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13, 2022.
  64. W. Du, J. Chen, C. Zhang, P. Zhao, H. Wan, Z. Zhou, Y. Cao, Z. Huang, Y. Li, and B. Wu, “Sarnas: A hardware-aware sar target detection algorithm via multiobjective neural architecture search,” IEEE Transactions on Geoscience and Remote Sensing, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.