Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generative Retrieval as Multi-Vector Dense Retrieval (2404.00684v1)

Published 31 Mar 2024 in cs.IR and cs.AI

Abstract: Generative retrieval generates identifiers of relevant documents in an end-to-end manner using a sequence-to-sequence architecture for a given query. The relation between generative retrieval and other retrieval methods, especially those based on matching within dense retrieval models, is not yet fully comprehended. Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval. Accordingly, generative retrieval exhibits behavior analogous to hierarchical search within a tree index in dense retrieval when using hierarchical semantic identifiers. However, prior work focuses solely on the retrieval stage without considering the deep interactions within the decoder of generative retrieval. In this paper, we fill this gap by demonstrating that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document. Specifically, we examine the attention layer and prediction head of generative retrieval, revealing that generative retrieval can be understood as a special case of multi-vector dense retrieval. Both methods compute relevance as a sum of products of query and document vectors and an alignment matrix. We then explore how generative retrieval applies this framework, employing distinct strategies for computing document token vectors and the alignment matrix. We have conducted experiments to verify our conclusions and show that both paradigms exhibit commonalities of term matching in their alignment matrix.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Autoregressive Search Engines: Generating Substrings as Document Identifiers. Advances in Neural Information Processing Systems 35 (2022), 31668–31683.
  2. Autoregressive Entity Retrieval. arXiv:2010.00904 [cs.CL]
  3. Lexically Constrained Neural Machine Translation with Explicit Alignment Guidance. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI Press, 12630–12638. https://doi.org/10.1609/AAAI.V35I14.17496
  4. Continual Learning for Generative Retrieval over Dynamic Corpora. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM ’23). Association for Computing Machinery, New York, NY, USA, 306–315. https://doi.org/10.1145/3583780.3614821
  5. Accurate Word Alignment Induction from Neural Machine Translation. In EMNLP (1). Association for Computational Linguistics, 566–576.
  6. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL-HLT (1). Association for Computational Linguistics, 4171–4186.
  7. Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth. In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 2793–2803. http://proceedings.mlr.press/v139/dong21a.html
  8. A Mathematical Framework for Transformer Circuits. Transformer Circuits Thread (2021). https://transformer-circuits.pub/2021/framework/index.html.
  9. COILcr: Efficient Semantic Matching Contextualized Exact Match Retrieval. In Advances in Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part I (Dublin, Ireland). Springer-Verlag, Berlin, Heidelberg, 298–312. https://doi.org/10.1007/978-3-031-28244-7_19
  10. SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking. In SIGIR. ACM, 2288–2292.
  11. A White Box Analysis of ColBERT. In Advances in Information Retrieval - 43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12657), Djoerd Hiemstra, Marie-Francine Moens, Josiane Mothe, Raffaele Perego, Martin Potthast, and Fabrizio Sebastiani (Eds.). Springer, 257–263. https://doi.org/10.1007/978-3-030-72240-1 _23
  12. COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. In NAACL-HLT. Association for Computational Linguistics, 3030–3042.
  13. Cross-lingual Information Retrieval with BERT. In Proceedings of the workshop on Cross-Language Search and Summarization of Text and Speech (CLSSTS2020), Kathy McKeown, Douglas W. Oard, Elizabeth, and Richard Schwartz (Eds.). European Language Resources Association, Marseille, France, 26–31. https://aclanthology.org/2020.clssts-1.5
  14. Dense Passage Retrieval for Open-Domain Question Answering. In EMNLP. Association for Computational Linguistics, 6769–6781.
  15. Omar Khattab and Matei Zaharia. 2020. ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT. In SIGIR. ACM, 39–48.
  16. Natural Questions: a Benchmark for Question Answering Research. Trans. Assoc. Comput. Linguistics 7 (2019), 452–466.
  17. Nonparametric Decoding for Generative Retrieval. In ACL (Findings). Association for Computational Linguistics, 12642–12661.
  18. Rethinking the Role of Token Retrieval in Multi-Vector Retrieval. CoRR abs/2304.01982 (2023). https://doi.org/10.48550/ARXIV.2304.01982 arXiv:2304.01982
  19. GLEN: Generative Retrieval via Lexical Index Learning. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 7693–7704. https://aclanthology.org/2023.emnlp-main.477
  20. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association for Computational Linguistics, 7871–7880. https://doi.org/10.18653/V1/2020.ACL-MAIN.703
  21. Bryan Li. 2022. Word Alignment in the Era of Deep Learning: A Tutorial. CoRR abs/2212.00138 (2022). https://doi.org/10.48550/ARXIV.2212.00138 arXiv:2212.00138
  22. Structural Supervision for Word Alignment and Machine Translation. In ACL (Findings). Association for Computational Linguistics, 4084–4094.
  23. CITADEL: Conditional Token Interaction via Dynamic Lexical Routing for Efficient and Effective Multi-Vector Retrieval. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics, 11891–11907. https://doi.org/10.18653/V1/2023.ACL-LONG.663
  24. SLIM: Sparsified Late Interaction for Multi-Vector Retrieval with Inverted Indexes. In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 1954–1959. https://doi.org/10.1145/3539618.3591977
  25. Learning to Rank in Generative Retrieval. CoRR abs/2306.15222 (2023). https://doi.org/10.48550/ARXIV.2306.15222 arXiv:2306.15222
  26. Sparse, Dense, and Attentional Representations for Text Retrieval. Trans. Assoc. Comput. Linguistics 9 (2021), 329–345.
  27. DSI++: Updating Transformer Memory with New Documents. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, Singapore, 8198–8213. https://doi.org/10.18653/v1/2023.emnlp-main.510
  28. MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. In Proceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 co-located with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016 (CEUR Workshop Proceedings, Vol. 1773), Tarek Richard Besold, Antoine Bordes, Artur S. d’Avila Garcez, and Greg Wayne (Eds.). CEUR-WS.org. https://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
  29. Thong Nguyen and Andrew Yates. 2023. Generative Retrieval as Dense Retrieval. CoRR abs/2306.11397 (2023). https://doi.org/10.48550/ARXIV.2306.11397 arXiv:2306.11397
  30. Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models. In Findings of the Association for Computational Linguistics: ACL 2022, Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics, Dublin, Ireland, 1864–1874. https://doi.org/10.18653/v1/2022.findings-acl.146
  31. Large Dual Encoders Are Generalizable Retrievers. In EMNLP. Association for Computational Linguistics, 9844–9855.
  32. In-context Learning and Induction Heads. Transformer Circuits Thread (2022). https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.
  33. How Does Generative Retrieval Scale to Millions of Passages?. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 1305–1321. https://aclanthology.org/2023.emnlp-main.83
  34. Multi-Vector Retrieval as Sparse Alignment. arXiv:2211.01267 (November 2022). http://arxiv.org/abs/2211.01267
  35. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html
  36. Recommender Systems with Generative Retrieval. CoRR abs/2305.05065 (2023). https://doi.org/10.48550/ARXIV.2305.05065 arXiv:2305.05065
  37. Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (2009), 333–389. https://doi.org/10.1561/1500000019
  38. Learning to Tokenize for Generative Retrieval. arXiv:2304.04171 (April 2023). http://arxiv.org/abs/2304.04171
  39. Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Long Beach, CA, USA) (KDD ’23). Association for Computing Machinery, New York, NY, USA, 4904–4913. https://doi.org/10.1145/3580305.3599903
  40. Recent Advances in Generative Information Retrieval. In SIGIR-AP. ACM, 294–297.
  41. Transformer Memory as a Differentiable Search Index. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/892840a6123b5ec99ebaab8be1530fba-Abstract-Conference.html
  42. A Neural Corpus Indexer for Document Retrieval. In Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/a46156bd3579c3b268108ea6aca71d13-Abstract-Conference.html
  43. Transformers: State-of-the-Art Natural Language Processing. In EMNLP (Demos). Association for Computational Linguistics, 38–45.
  44. Auto Search Indexer for End-to-End Document Retrieval. In EMNLP (Findings). Association for Computational Linguistics, 6955–6970.
  45. Cross-lingual Language Model Pretraining for Retrieval. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). ACM / IW3C2, 1029–1039. https://doi.org/10.1145/3442381.3449830
  46. Generative Dense Retrieval: Memory Can Be a Burden. arXiv:2401.10487 [cs.IR]
  47. Scalable and Effective Generative Information Retrieval. CoRR abs/2311.09134 (2023). https://doi.org/10.48550/ARXIV.2311.09134 arXiv:2311.09134
  48. Mind the Gap: Cross-Lingual Information Retrieval with Hierarchical Knowledge Enhancement. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 4345–4353. https://doi.org/10.1609/AAAI.V36I4.20355
  49. Term-Sets Can Be Strong Document Identifiers For Auto-Regressive Search Engines. ArXiv abs/2305.13859 (2023). https://api.semanticscholar.org/CorpusID:258841428
  50. Le Zhao. 2012. Modeling and solving term mismatch for full-text retrieval. SIGIR Forum 46, 2 (2012), 117–118.
  51. Giulio Zhou and Jacob Devlin. 2021. Multi-Vector Attention Models for Deep Re-ranking. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic, 5452–5456. https://doi.org/10.18653/v1/2021.emnlp-main.443
  52. DynamicRetriever: A Pre-trained Model-based IR System Without an Explicit Index. Mach. Intell. Res. 20, 2 (April 2023), 276–288. https://doi.org/10.1007/s11633-022-1373-9
  53. Ultron: An Ultimate Retriever on Corpus with a Model-based Indexer. CoRR abs/2208.09257 (2022). https://doi.org/10.48550/ARXIV.2208.09257 arXiv:2208.09257
  54. Bridging the Gap Between Indexing and Retrieval for Differentiable Search Index with Query Generation. ArXiv abs/2206.10128 (2022). https://api.semanticscholar.org/CorpusID:249890267
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Shiguang Wu (15 papers)
  2. Wenda Wei (1 paper)
  3. Mengqi Zhang (48 papers)
  4. Zhumin Chen (78 papers)
  5. Jun Ma (347 papers)
  6. Zhaochun Ren (117 papers)
  7. Maarten de Rijke (261 papers)
  8. Pengjie Ren (95 papers)
Citations (6)