Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of Short Segment Pediatric Heart Sounds Based on a Transformer-Based Convolutional Neural Network (2404.00470v1)

Published 30 Mar 2024 in cs.SD, cs.LG, and eess.AS

Abstract: Congenital anomalies arising as a result of a defect in the structure of the heart and great vessels are known as congenital heart diseases or CHDs. A PCG can provide essential details about the mechanical conduction system of the heart and point out specific patterns linked to different kinds of CHD. This study aims to investigate the minimum signal duration required for the automatic classification of heart sounds. This study also investigated the optimum signal quality assessment indicator (Root Mean Square of Successive Differences) RMSSD and (Zero Crossings Rate) ZCR value. Mel-frequency cepstral coefficients (MFCCs) based feature is used as an input to build a Transformer-Based residual one-dimensional convolutional neural network, which is then used for classifying the heart sound. The study showed that 0.4 is the ideal threshold for getting suitable signals for the RMSSD and ZCR indicators. Moreover, a minimum signal length of 5s is required for effective heart sound classification. It also shows that a shorter signal (3 s heart sound) does not have enough information to categorize heart sounds accurately, and the longer signal (15 s heart sound) may contain more noise. The best accuracy, 93.69%, is obtained for the 5s signal to distinguish the heart sound.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com