Dynamic Motion/Force Control of Mobile Manipulators via Extended-UDE (2404.00443v2)
Abstract: Mobile manipulators are known for their superior mobility over manipulators on fixed bases, offering promising applications in smart industry and housekeeping scenarios. The dynamic coupling nature between the mobile base and the manipulator presents challenges for force interactive tasks of the mobile manipulator. However, current strategies often fail to account for this coupling in such scenarios. To address this, this paper presents a dynamic coupling-integrated manipulator model that requires only the manipulator dynamics and the mobile base kinematics, which simplifies the modeling process. In addition, embedding the dynamic model, an extended uncertainty and disturbance estimator (UDE) is proposed for the mobile manipulator, which separately estimates the dynamic coupling terms and other unmodeled uncertainties, incorporating them into the feedforward and feedback control loops, respectively. The proposed approach increases the speed of response of the system and improves the dynamic robot-environment interaction (REI) performance of the mobile manipulator. A series of simulations and experiments of a wall-cleaning task are conducted to verify the effectiveness of the proposed approach. Ablation studies demonstrate that the proposed approach significantly improves the motion/force tracking performance when the mobile base is in dynamic motion.
- T. Kim, S. Yoo, T. Seo, H. S. Kim, and J. Kim, “Design and force-tracking impedance control of 2-dof wall-cleaning manipulator via disturbance observer,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 3, pp. 1487–1498, 2020.
- C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich, “The design of stretch: A compact, lightweight mobile manipulator for indoor human environments,” in Proc. IEEE Int. Conf. Robot. Autom. IEEE, 2022, pp. 3150–3157.
- J. Zhao, A. Giammarino, E. Lamon, J. M. Gandarias, E. D. Momi, and A. Ajoudani, “A hybrid learning and optimization framework to achieve physically interactive tasks with mobile manipulators,” IEEE Robot. Autom. Lett., vol. 7, no. 3, pp. 8036–8043, 2022.
- A. Ollero, G. Heredia, A. Franchi, G. Antonelli, K. Kondak, A. Sanfeliu, A. Viguria, J. R. Martinez-de Dios, F. Pierri, J. Cortes, A. Santamaria-Navarro, M. A. Trujillo Soto, R. Balachandran, J. Andrade-Cetto, and A. Rodriguez, “The aeroarms project: Aerial robots with advanced manipulation capabilities for inspection and maintenance,” IEEE Robot. Autom. Mag., vol. 25, no. 4, pp. 12–23, 2018.
- M. Tognon, H. A. T. Chávez, E. Gasparin, Q. Sablé, D. Bicego, A. Mallet, M. Lany, G. Santi, B. Revaz, J. Cortés, and A. Franchi, “A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1846–1851, 2019.
- J. Liu, S. Iacoponi, C. Laschi, L. Wen, and M. Calisti, “Underwater mobile manipulation: A soft arm on a benthic legged robot,” IEEE Robot. Autom. Mag., vol. 27, no. 4, pp. 12–26, 2020.
- Z. Gong, X. Fang, X. Chen, J. Cheng, Z. Xie, J. Liu, B. Chen, H. Yang, S. Kong, Y. Hao, T. Wang, J. Yu, and L. Wen, “A soft manipulator for efficient delicate grasping in shallow water: Modeling, control, and real-world experiments,” Int. J. Robot. Res., vol. 40, no. 1, pp. 449–469, 2021.
- H. Huang, Q. Tang, J. Li, W. Zhang, X. Bao, H. Zhu, and G. Wang, “A review on underwater autonomous environmental perception and target grasp, the challenge of robotic organism capture,” Ocean Eng., vol. 195, p. 106644, 2020.
- O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart, S. Wang, M. Cutkosky, A. Edsinger, P. Mullins, M. Barham, C. R. Voolstra, K. N. Salama, M. L’Hour, and V. Creuze, “Ocean one: A robotic avatar for oceanic discovery,” IEEE Robot. Autom. Mag., vol. 23, no. 4, pp. 20–29, 2016.
- M. Rigotti-Thompson, M. Torres-Torriti, F. A. Auat Cheein, and G. Troni, “ℋ∞subscriptℋ\mathcal{H}_{\infty}caligraphic_H start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-based terrain disturbance rejection for hydraulically actuated mobile manipulators with a nonrigid link,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 5, pp. 2523–2533, 2020.
- F. Pastor, F. J. Ruiz-Ruiz, J. M. Gómez-de Gabriel, and A. J. García-Cerezo, “Autonomous wristband placement in a moving hand for victims in search and rescue scenarios with a mobile manipulator,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 11 871–11 878, 2022.
- S. Thakar, P. Rajendran, A. M. Kabir, and S. K. Gupta, “Manipulator motion planning for part pickup and transport operations from a moving base,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 1, pp. 191–206, 2022.
- V. Pilania and K. Gupta, “Mobile manipulator planning under uncertainty in unknown environments,” Int. J. Robot. Res., vol. 37, no. 2-3, pp. 316–339, 2018.
- Y. Liu, Z. Li, H. Su, and C.-Y. Su, “Whole-body control of an autonomous mobile manipulator using series elastic actuators,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 2, pp. 657–667, 2021.
- Z. Zhou, X. Yang, H. Wang, and X. Zhang, “Digital twin with integrated robot-human/environment interaction dynamics for an industrial mobile manipulator,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 5041–5047.
- M. Souzanchi-K., A. Arab, M.-R. Akbarzadeh-T., and M. M. Fateh, “Robust impedance control of uncertain mobile manipulators using time-delay compensation,” IEEE Trans. Contr. Syst. Technol., vol. 26, no. 6, pp. 1942–1953, 2018.
- G. Zhang, Y. He, B. Dai, F. Gu, J. Han, and G. Liu, “Robust control of an aerial manipulator based on a variable inertia parameters model,” IEEE Trans. Ind. Electron., vol. 67, no. 11, pp. 9515–9525, 2020.
- K. Bodie, M. Tognon, and R. Siegwart, “Dynamic end effector tracking with an omnidirectional parallel aerial manipulator,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 8165–8172, 2021.
- Y. Dong and B. Ren, “Ude-based variable impedance control of uncertain robot systems,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 49, no. 12, pp. 2487–2498, 2019.
- Y. Lin, Z. Chen, and B. Yao, “Unified motion/force/impedance control for manipulators in unknown contact environments based on robust model-reaching approach,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 4, pp. 1905–1913, 2021.