Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continual Learning for Autonomous Robots: A Prototype-based Approach (2404.00418v1)

Published 30 Mar 2024 in cs.LG, cs.CV, and cs.RO

Abstract: Humans and animals learn throughout their lives from limited amounts of sensed data, both with and without supervision. Autonomous, intelligent robots of the future are often expected to do the same. The existing continual learning (CL) methods are usually not directly applicable to robotic settings: they typically require buffering and a balanced replay of training data. A few-shot online continual learning (FS-OCL) setting has been proposed to address more realistic scenarios where robots must learn from a non-repeated sparse data stream. To enable truly autonomous life-long learning, an additional challenge of detecting novelties and learning new items without supervision needs to be addressed. We address this challenge with our new prototype-based approach called Continually Learning Prototypes (CLP). In addition to being capable of FS-OCL learning, CLP also detects novel objects and learns them without supervision. To mitigate forgetting, CLP utilizes a novel metaplasticity mechanism that adapts the learning rate individually per prototype. CLP is rehearsal-free, hence does not require a memory buffer, and is compatible with neuromorphic hardware, characterized by ultra-low power consumption, real-time processing abilities, and on-chip learning. Indeed, we have open-sourced a simple version of CLP in the neuromorphic software framework Lava, targetting Intel's neuromorphic chip Loihi 2. We evaluate CLP on a robotic vision dataset, OpenLORIS. In a low-instance FS-OCL scenario, CLP shows state-of-the-art results. In the open world, CLP detects novelties with superior precision and recall and learns features of the detected novel classes without supervision, achieving a strong baseline of 99% base class and 65%/76% (5-shot/10-shot) novel class accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change: Continual learning in deep neural networks,” Trends in Cognitive Sciences, vol. 24, pp. 1028–1040, 12 2020.
  2. S. Yan, J. Xie, and X. He, “Der: Dynamically expandable representation for class incremental learning,” CVPR, pp. 3013–3022, 3 2021.
  3. M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying forgetting in classification tasks,” IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3366–3385, 2021.
  4. T. L. Hayes and C. Kanan, “Online continual learning for embedded devices,” arXiv preprint arXiv:2203.10681, 2022.
  5. U. Michieli and M. Ozay, “Online continual learning for robust indoor object recognition,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 3849–3856.
  6. A. Bendale and T. Boult, “Towards open world recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1893–1902.
  7. R. Roady, T. L. Hayes, R. Kemker, A. Gonzales, and C. Kanan, “Are open set classification methods effective on large-scale datasets?” Plos one, vol. 15, no. 9, p. e0238302, 2020.
  8. M. Jafarzadeh, A. R. Dhamija, S. Cruz, C. Li, T. Ahmad, and T. E. Boult, “A review of open-world learning and steps toward open-world learning without labels,” arXiv preprint arXiv:2011.12906, 2020.
  9. P. J. et al, “Contributions by metaplasticity to solving the catastrophic forgetting problem,” Trends in Neurosciences, vol. 45, no. 9, pp. 656–666, 2022.
  10. S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and representation learning,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.
  11. M. De Lange and T. Tuytelaars, “Continual prototype evolution: Learning online from non-stationary data streams,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 8250–8259.
  12. H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” Advances in neural information processing systems, vol. 30, 2017.
  13. A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with a-gem,” arXiv preprint arXiv:1812.00420, 2018.
  14. J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska et al., “Overcoming catastrophic forgetting in neural networks,” Proceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.
  15. R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware synapses: Learning what (not) to forget,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 139–154.
  16. J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, and C.-C. J. Kuo, “Class-incremental learning via deep model consolidation,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 1131–1140.
  17. A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint arXiv:1606.04671, 2016.
  18. A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single network to multiple tasks by learning to mask weights,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018.
  19. A. Mallya and S. Lazebnik, “Packnet: Adding multiple tasks to a single network by iterative pruning,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.
  20. T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990.
  21. V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A review and comparison of state of the art algorithms,” Neurocomputing, vol. 275, pp. 1261–1274, 2018.
  22. Y. Xu, F. Shen, and J. Zhao, “An incremental learning vector quantization algorithm for pattern classification,” Neural Computing and Applications, vol. 21, pp. 1205–1215, 2012.
  23. O. Beyer and P. Cimiano, “Dyng: Dynamic online growing neural gas for stream data classification.” in ESANN, 2013.
  24. G. I. Parisi, J. Tani, C. Weber, and S. Wermter, “Lifelong learning of spatiotemporal representations with dual-memory recurrent self-organization,” Frontiers in neurorobotics, vol. 12, p. 78, 2018.
  25. F. Zhu, X.-Y. Zhang, C. Wang, F. Yin, and C.-L. Liu, “Prototype augmentation and self-supervision for incremental learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 5871–5880.
  26. T. L. Hayes and C. Kanan, “Lifelong machine learning with deep streaming linear discriminant analysis,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2020, pp. 220–221.
  27. T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience replay for streaming learning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 9769–9776.
  28. J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” Advances in neural information processing systems, vol. 30, 2017.
  29. M. Hersche, G. Karunaratne, G. Cherubini, L. Benini, A. Sebastian, and A. Rahimi, “Constrained few-shot class-incremental learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 9057–9067.
  30. K. R. A. et al, “Infinite mixture prototypes for few-shot learning,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 348–357, 2 2019.
  31. A. Ayub and A. R. Wagner, “Tell me what this is: Few-shot incremental object learning by a robot,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 8344–8350.
  32. ——, “Cognitively-inspired model for incremental learning using a few examples,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 222–223.
  33. Y. Y. Shen, Y. M. Zhang, X. Y. Zhang, and C. L. Liu, “Online semi-supervised learning with learning vector quantization,” Neurocomputing, vol. 399, pp. 467–478, 7 2020.
  34. D. Bohus, S. Andrist, A. Feniello, N. Saw, and E. Horvitz, “Continual learning about objects in the wild: An interactive approach,” in Proceedings of the 2022 International Conference on Multimodal Interaction, 2022, pp. 476–486.
  35. M. Ren, M. L. Iuzzolino, M. C. Mozer, and R. S. Zemel, “Wandering within a world: Online contextualized few-shot learning,” arXiv preprint arXiv:2007.04546, 2020.
  36. K. Joseph, S. Khan, F. S. Khan, and V. N. Balasubramanian, “Towards open world object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 5830–5840.
  37. D. Kudithipudi, M. Aguilar-Simon, J. Babb, M. Bazhenov, D. Blackiston, J. Bongard, A. P. Brna, S. Chakravarthi Raja, N. Cheney, J. Clune et al., “Biological underpinnings for lifelong learning machines,” Nature Machine Intelligence, vol. 4, no. 3, pp. 196–210, 2022.
  38. M. Biehl, B. Hammer, and T. Villmann, “Prototype-based models in machine learning,” Wiley Interdisciplinary Reviews: Cognitive Science, vol. 7, pp. 92–111, 3 2016.
  39. S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified classifier incrementally via rebalancing,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 831–839.
  40. M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y. H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” IEEE Micro, vol. 38, pp. 82–99, 2018.
  41. E. Hajizada, P. Berggold, M. Iacono, A. Glover, and Y. Sandamirskaya, “Interactive continual learning for robots: a neuromorphic approach,” in Proceedings of the International Conference on Neuromorphic Systems 2022, 2022, pp. 1–10.
  42. F. H. Hamker, “Life-long learning cell structures—continuously learning without catastrophic interference,” Neural Networks, vol. 14, no. 4-5, pp. 551–573, 2001.
  43. R. De Rosa, T. Mensink, and B. Caputo, “Online open world recognition,” arXiv preprint arXiv:1604.02275, 2016.
  44. J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37, 2014.
  45. T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka, “Distance-based image classification: Generalizing to new classes at near-zero cost,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, pp. 2624–2637, 2013.
  46. Q. She, F. Feng, X. Hao, Q. Yang, C. Lan, V. Lomonaco, X. Shi, Z. Wang, Y. Guo, Y. Zhang et al., “Openloris-object: A robotic vision dataset and benchmark for lifelong deep learning,” in 2020 IEEE international conference on robotics and automation (ICRA).   IEEE, 2020, pp. 4767–4773.
  47. T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27, no. 8, pp. 861–874, 2006.
  48. D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” arXiv preprint arXiv:1610.02136, 2016.
  49. S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” arXiv preprint arXiv:1706.02690, 2017.
  50. K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” Advances in neural information processing systems, vol. 31, 2018.
  51. Y. Shu, Y. Shi, Y. Wang, T. Huang, and Y. Tian, “P-odn: Prototype-based open deep network for open set recognition,” Scientific Reports 2020 10:1, vol. 10, pp. 1–13, 4 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets