Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Robust are the Tabular QA Models for Scientific Tables? A Study using Customized Dataset (2404.00401v1)

Published 30 Mar 2024 in cs.CL

Abstract: Question-answering (QA) on hybrid scientific tabular and textual data deals with scientific information, and relies on complex numerical reasoning. In recent years, while tabular QA has seen rapid progress, understanding their robustness on scientific information is lacking due to absence of any benchmark dataset. To investigate the robustness of the existing state-of-the-art QA models on scientific hybrid tabular data, we propose a new dataset, "SciTabQA", consisting of 822 question-answer pairs from scientific tables and their descriptions. With the help of this dataset, we assess the state-of-the-art Tabular QA models based on their ability (i) to use heterogeneous information requiring both structured data (table) and unstructured data (text) and (ii) to perform complex scientific reasoning tasks. In essence, we check the capability of the models to interpret scientific tables and text. Our experiments show that "SciTabQA" is an innovative dataset to study question-answering over scientific heterogeneous data. We benchmark three state-of-the-art Tabular QA models, and find that the best F1 score is only 0.462.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Akash Ghosh (14 papers)
  2. B Venkata Sahith (1 paper)
  3. Niloy Ganguly (95 papers)
  4. Pawan Goyal (170 papers)
  5. Mayank Singh (92 papers)
Citations (1)