Maximal quantum interaction between free electrons and photons (2404.00377v2)
Abstract: The emerging field of free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states for quantum information processing. Although recent experimental studies have entered the quantum regime, rapid theoretical developments predict that qualitatively unique phenomena only emerge beyond a certain interaction strength. It is thus pertinent to identify the maximal electron-photon interaction strength and the materials, geometries, and particle energies that enable one to approach it. We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction. Crucially, we obtain an explicit energy selection recipe for electrons and photons to achieve maximal interaction at arbitrary separations and identify two optimal regimes favoring either fast or slow electrons over those with intermediate velocities. We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions. Our findings offer fundamental intuition for maximizing the quantum interaction between free electrons and photons and provide practical design rules for future experiments on electron-photon and electron-mediated photon-photon entanglement. They should also enable the evaluation of key metrics for applications such as the maximum power of free-electron radiation sources and the maximum acceleration gradient of dielectric laser accelerators.
- F. G. De Abajo, Reviews of Modern Physics 82, 209 (2010).
- A. Polman, M. Kociak, and F. J. García de Abajo, Nature Materials 18, 1158 (2019).
- F. J. Garcia de Abajo and V. Di Giulio, ACS Photonics 8, 945 (2021).
- N. Talebi, Advances in Physics: X 3, 1499438 (2018).
- N. Rivera and I. Kaminer, Nature Reviews Physics 2, 538 (2020).
- C. Pellegrini, A. Marinelli, and S. Reiche, Reviews of Modern Physics 88, 015006 (2016).
- O. Kfir, Physical Review Letters 123, 103602 (2019).
- V. Di Giulio, M. Kociak, and F. J. G. de Abajo, Optica 6, 1524 (2019).
- X. Bendana, A. Polman, and F. J. García de Abajo, Nano Letters 11, 5099 (2011).
- V. Di Giulio and F. J. G. de Abajo, Optica 7, 1820 (2020).
- A. Konečná, F. Iyikanat, and F. J. García de Abajo, Science Advances 8, eabo7853 (2022).
- Y. Pan, B. Zhang, and D. Podolsky, arXiv preprint arXiv:2207.07010 (2022).
- B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature 462, 902 (2009).
- S. T. Park, M. Lin, and A. H. Zewail, New Journal of Physics 12, 123028 (2010).
- F. J. García de Abajo, A. Asenjo-Garcia, and M. Kociak, Nano Letters 10, 1859 (2010).
- F. J. Garcia-Vidal, C. Ciuti, and T. W. Ebbesen, Science 373, eabd0336 (2021).
- O. D. Miller, Fundamental limits to near-field optical response, in Advances in Near-Field Optics, edited by R. Gordon (Springer International Publishing, Cham, 2023) pp. 25–85.
- L. Zhang, F. Monticone, and O. D. Miller, Nature Communications 14, 7724 (2023).
- R. Carminati and J. C. Schotland, Principles of Scattering and Transport of Light (Cambridge University Press, 2021).
- H. Andrews and C. Brau, Physical Review Special Topics-Accelerators and Beams 7, 070701 (2004).
- V. Kumar and K.-J. Kim, Physical Review E 73, 026501 (2006).
- D. Pan and H. Xu, Physical Review Letters 130, 186901 (2023).
- F. J. G. de Abajo, ACS Nano 7, 11409 (2013).
- N. Talebi, Physical Review Letters 125, 080401 (2020).
- A. Karnieli and S. Fan, Science Advances 9, eadh2425 (2023).
- R. Shiloh, T. Chlouba, and P. Hommelhoff, Physical Review Letters 128, 235301 (2022b).
- P. Gonçalves and F. J. García de Abajo, Nano Letters (2023).
- J. A. Van Vechten, Physical Review 182, 891 (1969).
- A. D. Rakić, Applied optics 34, 4755 (1995).
- R. Yu, A. Konečná, and F. J. G. de Abajo, Physical Review Letters 127, 157404 (2021).
- F. R. Prudêncio and M. G. Silveirinha, Physical Review B 98, 115136 (2018).
- Z. Zhao et. al., arXiv Submission (2024).