Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images (2404.00231v3)

Published 30 Mar 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Lumbar disc degeneration, a progressive structural wear and tear of lumbar intervertebral disc, is regarded as an essential role on low back pain, a significant global health concern. Automated lumbar spine geometry reconstruction from MR images will enable fast measurement of medical parameters to evaluate the lumbar status, in order to determine a suitable treatment. Existing image segmentation-based techniques often generate erroneous segments or unstructured point clouds, unsuitable for medical parameter measurement. In this work, we present $\textit{UNet-DeformSA}$ and $\textit{TransDeformer}$: novel attention-based deep neural networks that reconstruct the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients, and we also present a variant of $\textit{TransDeformer}$ for error estimation. Specially, we devise new attention modules with a new attention formula, which integrate image features and tokenized contour features to predict the displacements of the points on a shape template without the need for image segmentation. The deformed template reveals the lumbar spine geometry in an image. Experiment results show that our networks generate artifact-free geometry outputs, and the variant of $\textit{TransDeformer}$ can predict the errors of a reconstructed geometry. Our code is available at https://github.com/linchenq/TransDeformer-Mesh.

Summary

We haven't generated a summary for this paper yet.