Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AirPilot: Interpretable PPO-based DRL Auto-Tuned Nonlinear PID Drone Controller for Robust Autonomous Flights (2404.00204v5)

Published 30 Mar 2024 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: Navigation precision, speed and stability are crucial for safe Unmanned Aerial Vehicle (UAV) flight maneuvers and effective flight mission executions in dynamic environments. Different flight missions may have varying objectives, such as minimizing energy consumption, achieving precise positioning, or maximizing speed. A controller that can adapt to different objectives on the fly is highly valuable. Proportional Integral Derivative (PID) controllers are one of the most popular and widely used control algorithms for drones and other control systems, but their linear control algorithm fails to capture the nonlinear nature of the dynamic wind conditions and complex drone system. Manually tuning the PID gains for various missions can be time-consuming and requires significant expertise. This paper aims to revolutionize drone flight control by presenting the AirPilot, a nonlinear Deep Reinforcement Learning (DRL) - enhanced Proportional Integral Derivative (PID) drone controller using Proximal Policy Optimization (PPO). AirPilot controller combines the simplicity and effectiveness of traditional PID control with the adaptability, learning capability, and optimization potential of DRL. This makes it better suited for modern drone applications where the environment is dynamic, and mission-specific performance demands are high. We employed a COEX Clover autonomous drone for training the DRL agent within the simulator and implemented it in a real-world lab setting, which marks a significant milestone as one of the first attempts to apply a DRL-based flight controller on an actual drone. Airpilot is capable of reducing the navigation error of the default PX4 PID position controller by 90%, improving effective navigation speed of a fine-tuned PID controller by 21%, reducing settling time and overshoot by 17% and 16% respectively.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com