Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sequential Quadratic Programming Approach to the Solution of Open-Loop Generalized Nash Equilibria for Autonomous Racing (2404.00186v1)

Published 29 Mar 2024 in cs.RO

Abstract: Dynamic games can be an effective approach for modeling interactive behavior between multiple competitive agents in autonomous racing and they provide a theoretical framework for simultaneous prediction and control in such scenarios. In this work, we propose DG-SQP, a numerical method for the solution of local generalized Nash equilibria (GNE) for open-loop general-sum dynamic games for agents with nonlinear dynamics and constraints. In particular, we formulate a sequential quadratic programming (SQP) approach which requires only the solution of a single convex quadratic program at each iteration. The three key elements of the method are a non-monotonic line search for solving the associated KKT equations, a merit function to handle zero sum costs, and a decaying regularization scheme for SQP step selection. We show that our method achieves linear convergence in the neighborhood of local GNE and demonstrate the effectiveness of the approach in the context of head-to-head car racing, where we show significant improvement in solver success rate when comparing against the state-of-the-art PATH solver for dynamic games. An implementation of our solver can be found at https://github.com/zhu-edward/DGSQP.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. J. Betz, H. Zheng, A. Liniger, U. Rosolia, P. Karle, M. Behl, V. Krovi, and R. Mangharam, “Autonomous vehicles on the edge: A survey on autonomous vehicle racing,” IEEE Open Journal of Intelligent Transportation Systems, 2022.
  2. P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capobianco, A. Devlic, F. Eckert, F. Fuchs et al., “Outracing champion gran turismo drivers with deep reinforcement learning,” Nature, vol. 602, no. 7896, pp. 223–228, 2022.
  3. E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza, “Champion-level drone racing using deep reinforcement learning,” Nature, vol. 620, no. 7976, pp. 982–987, 2023.
  4. J. Betz, T. Betz, F. Fent, M. Geisslinger, A. Heilmeier, L. Hermansdorfer, T. Herrmann, S. Huch, P. Karle, M. Lienkamp et al., “Tum autonomous motorsport: An autonomous racing software for the indy autonomous challenge,” Journal of Field Robotics, vol. 40, no. 4, pp. 783–809, 2023.
  5. C. Jung, A. Finazzi, H. Seong, D. Lee, S. Lee, B. Kim, G. Gang, S. Han, and D. H. Shim, “An autonomous system for head-to-head race: Design, implementation and analysis; team kaist at the indy autonomous challenge,” arXiv preprint arXiv:2303.09463, 2023.
  6. E. L. Zhu and F. Borrelli, “A sequential quadratic programming approach to the solution of open-loop generalized nash equilibria,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 3211–3217.
  7. R. Spica, E. Cristofalo, Z. Wang, E. Montijano, and M. Schwager, “A real-time game theoretic planner for autonomous two-player drone racing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1389–1403, 2020.
  8. W. Schwarting, A. Pierson, S. Karaman, and D. Rus, “Stochastic dynamic games in belief space,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 2157–2172, 2021.
  9. F. Laine, D. Fridovich-Keil, C.-Y. Chiu, and C. Tomlin, “Multi-hypothesis interactions in game-theoretic motion planning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 8016–8023.
  10. S. Le Cleac’h, M. Schwager, Z. Manchester et al., “Algames: A fast solver for constrained dynamic games,” in Proceedings of Robotics: Science and Systems, 2020.
  11. D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J. Tomlin, “Efficient iterative linear-quadratic approximations for nonlinear multi-player general-sum differential games,” in 2020 IEEE international conference on robotics and automation (ICRA).   IEEE, 2020, pp. 1475–1481.
  12. X. Liu, L. Peters, and J. Alonso-Mora, “Learning to play trajectory games against opponents with unknown objectives,” IEEE Robotics and Automation Letters, 2023.
  13. L. Peters, A. Bajcsy, C.-Y. Chiu, D. Fridovich-Keil, F. Laine, L. Ferranti, and J. Alonso-Mora, “Contingency games for multi-agent interaction,” arXiv preprint arXiv:2304.05483, 2023.
  14. T. Kavuncu, A. Yaraneri, and N. Mehr, “Potential ilqr: A potential-minimizing controller for planning multi-agent interactive trajectories,” in 17th Robotics: Science and Systems, RSS 2021.   MIT Press Journals, 2021.
  15. J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry, and A. D. Dragan, “Hierarchical game-theoretic planning for autonomous vehicles,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 9590–9596.
  16. F. Facchinei and C. Kanzow, “Generalized nash equilibrium problems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.
  17. S. P. Dirkse and M. C. Ferris, “The path solver: a nommonotone stabilization scheme for mixed complementarity problems,” Optimization methods and software, vol. 5, no. 2, pp. 123–156, 1995.
  18. M. Bhatt, Y. Jia, and N. Mehr, “Efficient constrained multi-agent trajectory optimization using dynamic potential games,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 7303–7310.
  19. Z. Wang, R. Spica, and M. Schwager, “Game theoretic motion planning for multi-robot racing,” in Distributed Autonomous Robotic Systems: The 14th International Symposium.   Springer, 2019, pp. 225–238.
  20. M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game theoretic planning for self-driving cars in competitive scenarios.” in Robotics: Science and Systems, 2019, pp. 1–9.
  21. ——, “Game-theoretic planning for self-driving cars in multivehicle competitive scenarios,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1313–1325, 2021.
  22. F. Laine, D. Fridovich-Keil, C.-Y. Chiu, and C. Tomlin, “The computation of approximate generalized feedback nash equilibria,” SIAM Journal on Optimization, vol. 33, no. 1, pp. 294–318, 2023.
  23. Y. Jia, M. Bhatt, and N. Mehr, “Rapid: Autonomous multi-agent racing using constrained potential dynamic games,” arXiv preprint arXiv:2305.00579, 2023.
  24. A. Liniger and J. Lygeros, “A noncooperative game approach to autonomous racing,” IEEE Transactions on Control Systems Technology, vol. 28, no. 3, pp. 884–897, 2019.
  25. E. L. Zhu, Y. R. Stürz, U. Rosolia, and F. Borrelli, “Trajectory optimization for nonlinear multi-agent systems using decentralized learning model predictive control,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 6198–6203.
  26. P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, vol. 4, pp. 1–51, 1995.
  27. J. B. Rosen, “Existence and uniqueness of equilibrium points for concave n-person games,” Econometrica: Journal of the Econometric Society, pp. 520–534, 1965.
  28. S. Wright, J. Nocedal et al., “Numerical optimization,” Springer Science, vol. 35, no. 67-68, p. 7, 1999.
  29. Q. Zhu, “A lagrangian approach to constrained potential games: Theory and examples,” in 2008 47th IEEE Conference on Decision and Control.   IEEE, 2008, pp. 2420–2425.
  30. A. Agrawal, S. Barratt, S. Boyd, E. Busseti, and W. M. Moursi, “Differentiating through a cone program,” Journal of Applied & Numerical Optimization, vol. 1, no. 2, 2019.
  31. M. Ferris and S. Lucidi, “Nonmonotone stabilization methods for nonlinear equations,” Journal of Optimization Theory and Applications, vol. 81, no. 1, pp. 53–71, 1994.
  32. A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106, pp. 25–57, 2006.
  33. N. Mehr, M. Wang, M. Bhatt, and M. Schwager, “Maximum-entropy multi-agent dynamic games: Forward and inverse solutions,” IEEE Transactions on Robotics, 2023.
  34. A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous racing of 1: 43 scale rc cars,” Optimal Control Applications and Methods, vol. 36, no. 5, pp. 628–647, 2015.
  35. T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-following for constrained nonlinear systems,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.   IEEE, 2009, pp. 8642–8647.
  36. A. Micaelli and C. Samson, “Trajectory tracking for unicycle-type and two-steering-wheels mobile robots,” Ph.D. dissertation, INRIA, 1993.
  37. U. Rosolia and F. Borrelli, “Learning how to autonomously race a car: a predictive control approach,” IEEE Transactions on Control Systems Technology, vol. 28, no. 6, pp. 2713–2719, 2019.
  38. E. L. Zhu, F. L. Busch, J. Johnson, and F. Borrelli, “A gaussian process model for opponent prediction in autonomous racing,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 8186–8191.
  39. D. Lam, C. Manzie, and M. Good, “Model predictive contouring control,” in 49th IEEE Conference on Decision and Control (CDC).   IEEE, 2010, pp. 6137–6142.
  40. J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” in 2015 IEEE intelligent vehicles symposium (IV).   IEEE, 2015, pp. 1094–1099.
  41. H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Vehicle system dynamics, vol. 21, no. S1, pp. 1–18, 1992.
  42. Z. Wang, T. Taubner, and M. Schwager, “Multi-agent sensitivity enhanced iterative best response: A real-time game theoretic planner for drone racing in 3d environments,” Robotics and Autonomous Systems, vol. 125, p. 103410, 2020.
  43. L. Peters, D. Fridovich-Keil, L. Ferranti, C. Stachniss, J. Alonso Mora, and F. Laine, “Learning mixed strategies in trajectory games,” Proceedings Robotics: Science and System XVIII, 2022.
Citations (14)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com