Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Faithfulness Conflict with Plausibility? An Empirical Study in Explainable AI across NLP Tasks (2404.00140v1)

Published 29 Mar 2024 in cs.AI and cs.LG

Abstract: Explainability algorithms aimed at interpreting decision-making AI systems usually consider balancing two critical dimensions: 1) \textit{faithfulness}, where explanations accurately reflect the model's inference process. 2) \textit{plausibility}, where explanations are consistent with domain experts. However, the question arises: do faithfulness and plausibility inherently conflict? In this study, through a comprehensive quantitative comparison between the explanations from the selected explainability methods and expert-level interpretations across three NLP tasks: sentiment analysis, intent detection, and topic labeling, we demonstrate that traditional perturbation-based methods Shapley value and LIME could attain greater faithfulness and plausibility. Our findings suggest that rather than optimizing for one dimension at the expense of the other, we could seek to optimize explainability algorithms with dual objectives to achieve high levels of accuracy and user accessibility in their explanations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xiaolei Lu (13 papers)
  2. Jianghong Ma (13 papers)