2000 character limit reached
Pseudoentanglement Ain't Cheap (2404.00126v2)
Published 29 Mar 2024 in quant-ph and cs.CC
Abstract: We show that any pseudoentangled state ensemble with a gap of $t$ bits of entropy requires $\Omega(t)$ non-Clifford gates to prepare. This bound is tight up to polylogarithmic factors if linear-time quantum-secure pseudorandom functions exist. Our result follows from a polynomial-time algorithm to estimate the entanglement entropy of a quantum state across any cut of qubits. When run on an $n$-qubit state that is stabilized by at least $2{n-t}$ Pauli operators, our algorithm produces an estimate that is within an additive factor of $\frac{t}{2}$ bits of the true entanglement entropy.
- Quantum Pseudoentanglement. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024), volume 287 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1–2:21, 2024. doi:10.4230/LIPIcs.ITCS.2024.2.
- Improved Simulation of Stabilizer Circuits. Physical Review A, 70(5), 2004. doi:10.1103/physreva.70.052328.
- Identifying Stabilizer States, 2008. https://pirsa.org/08080052.
- Efficient Tomography of Non-Interacting-Fermion States. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023), volume 266 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:18, 2023. doi:10.4230/LIPIcs.TQC.2023.12.
- Koenraad M. R. Audenaert. A sharp continuity estimate for the von Neumann entropy. Journal of Physics A: Mathematical and Theoretical, 40(28):8127, 2007. doi:10.1088/1751-8113/40/28/S18.
- Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3:181, 2019. doi:10.22331/q-2019-09-02-181.
- Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. Phys. Rev. Lett., 116:250501, 2016. doi:10.1103/PhysRevLett.116.250501.
- Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A, 71:022316, 2005. doi:10.1103/PhysRevA.71.022316.
- Efficient learning of t𝑡titalic_t-doped stabilizer states with single-copy measurements, 2023. arXiv:2308.07014.
- Entanglement in the stabilizer formalism, 2004. arXiv:quant-ph/0406168.
- The Exact Complexity of Pseudorandom Functions and the Black-Box Natural Proof Barrier for Bootstrapping Results in Computational Complexity. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, page 962–975, 2022. doi:10.1145/3519935.3520010.
- Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, 2023. arXiv:2305.13409.
- Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates II: Single-Copy Measurements, 2023. arXiv:2308.07175.
- Improved Stabilizer Estimation via Bell Difference Sampling, 2023. arXiv:2304.13915.
- Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), volume 251 of Leibniz International Proceedings in Informatics (LIPIcs), pages 64:1–64:20, 2023. doi:10.4230/LIPIcs.ITCS.2023.64.
- Schur–Weyl duality for the Clifford group with applications: Property testing, a robust Hudson theorem, and de Finetti representations. Communications in Mathematical Physics, 385(3):1325–1393, 2021. doi:10.1007/s00220-021-04118-7.
- Magic-induced computational separation in entanglement theory, 2024. arXiv:2403.19610.
- Pseudorandomness from subset states, 2023. arXiv:2312.09206.
- Bell sampling from quantum circuits, 2023. arXiv:2306.00083v1.
- Cryptography with Constant Computational Overhead. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08, page 433–442, 2008. doi:10.1145/1374376.1374438.
- Learning Quantum Circuits of Some T𝑇Titalic_T Gates. IEEE Transactions on Information Theory, 68(6):3951–3964, 2022. doi:10.1109/TIT.2022.3151760.
- Learning t-doped stabilizer states, 2023. arXiv:2305.15398v1.
- Learning efficient decoders for quasi-chaotic quantum scramblers, 2022. arXiv:2212.11338.
- Fermi Ma. Personal communication, 2024.
- Ashley Montanaro. Learning stabilizer states by Bell sampling, 2017. arXiv:1707.04012.
- Simulation of qubit quantum circuits via Pauli propagation. Phys. Rev. A, 99:062337, 2019. doi:10.1103/PhysRevA.99.062337.
- Yaoyun Shi. Both Toffoli and Controlled-NOT need little help to do universal quantum computation, 2002. arXiv:quant-ph/0205115.
- Leslie G. Valiant. Quantum Circuits That Can Be Simulated Classically in Polynomial Time. SIAM Journal on Computing, 31(4):1229–1254, 2002. doi:10.1137/S0097539700377025.