Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memristor-Based Lightweight Encryption (2404.00125v1)

Published 29 Mar 2024 in cs.CR, cs.AR, and cs.ET

Abstract: Next-generation personalized healthcare devices are undergoing extreme miniaturization in order to improve user acceptability. However, such developments make it difficult to incorporate cryptographic primitives using available target technologies since these algorithms are notorious for their energy consumption. Besides, strengthening these schemes against side-channel attacks further adds to the device overheads. Therefore, viable alternatives among emerging technologies are being sought. In this work, we investigate the possibility of using memristors for implementing lightweight encryption. We propose a 40-nm RRAM-based GIFT-cipher implementation using a 1T1R configuration with promising results; it exhibits roughly half the energy consumption of a CMOS-only implementation. More importantly, its non-volatile and reconfigurable substitution boxes offer an energy-efficient protection mechanism against side-channel attacks. The complete cipher takes 0.0034 mm$2$ of area, and encrypting a 128-bit block consumes a mere 242 pJ.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. M. A. Siddiqi, G. Hahn, S. Hamdioui, W. A. Serdijn, and C. Strydis, “Improving the security of the ieee 802.15. 6 standard for medical bans,” IEEE Access, vol. 10, pp. 62 953–62 975, 2022.
  2. S. Lv, J. Liu, and Z. Geng, “Application of memristors in hardware security: A current state-of-the-art technology,” Advanced Intelligent Systems, vol. 3, no. 1, p. 2000127, 2021.
  3. L. Wang, T. Dong, and M.-F. Ge, “Finite-time synchronization of memristor chaotic systems and its application in image encryption,” Applied Mathematics and Computation, vol. 347, pp. 293–305, 2019.
  4. L. Yang, L. Cheng, Y. Li, H. Li, J. Li, T.-C. Chang, and X. Miao, “Cryptographic key generation and in situ encryption in one-transistor-one-resistor memristors for hardware security,” Advanced Electronic Materials, vol. 7, no. 5, p. 2001182, 2021.
  5. J. Sun, Z. Wang, S. Wang, M. Yang, H. Gao, H. Wang, X. Ma, and Y. Hao, “Physical unclonable functions based on transient form of memristors for emergency defenses,” IEEE Electron Device Letters, vol. 43, no. 3, pp. 378–381, 2022.
  6. J. Cai, A. Amirsoleimani, and R. Genov, “Hyperlock: In-memory hyperdimensional encryption in memristor crossbar array,” in 2022 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2022, pp. 960–964.
  7. W. Dai, X. Xu, X. Song, and G. Li, “Audio encryption algorithm based on chen memristor chaotic system,” Symmetry, vol. 14, no. 1, p. 17, 2021.
  8. N. Du, H. Schmidt, and I. Polian, “Low-power emerging memristive designs towards secure hardware systems for applications in internet of things,” Nano Materials Science, vol. 3, no. 2, pp. 186–204, 2021.
  9. Y. Pang, B. Gao, B. Lin, H. Qian, and H. Wu, “Memristors for hardware security applications,” Advanced Electronic Materials, vol. 5, no. 9, p. 1800872, 2019.
  10. B. Cambou, D. Hély, and S. Assiri, “Cryptography with analog scheme using memristors,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 4, pp. 1–30, 2020.
  11. A. P. James, “An overview of memristive cryptography,” The European Physical Journal Special Topics, vol. 228, no. 10, pp. 2301–2312, 2019.
  12. J. A. Galvan Hernández, “Memristive security in free-floating neural implants,” Master’s thesis, TU Delft Faculty of Electrical Engineering, Mathematics and Computer Science, 2022. [Online]. Available: http://resolver.tudelft.nl/uuid:cdd29307-3660-4dbf-921e-dda05faaf16c
  13. L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.
  14. R. Wang, J.-Q. Yang, J.-Y. Mao, Z.-P. Wang, S. Wu, M. Zhou, T. Chen, Y. Zhou, and S.-T. Han, “Recent advances of volatile memristors: Devices, mechanisms, and applications,” Advanced Intelligent Systems, vol. 2, no. 9, p. 2000055, 2020.
  15. H. Li, S. Wang, X. Zhang, W. Wang, R. Yang, Z. Sun, W. Feng, P. Lin, Z. Wang, L. Sun et al., “Memristive crossbar arrays for storage and computing applications,” Advanced Intelligent Systems, vol. 3, no. 9, p. 2100017, 2021.
  16. S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann, “Aging-aware lifetime enhancement for memristor-based neuromorphic computing,” in 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2019, pp. 1751–1756.
  17. A. Singh, R. Bishnoi, R. V. Joshi, and S. Hamdioui, “Referencing-in-array scheme for rram-based cim architecture,” in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2022, pp. 1413–1418.
  18. Y. Bai, H. Wu, R. Wu, Y. Zhang, N. Deng, Z. Yu, and H. Qian, “Study of multi-level characteristics for 3d vertical resistive switching memory,” Scientific reports, vol. 4, no. 1, p. 5780, 2014.
  19. EMRL. (2020) JART – Jülich Aachen Resistive Switching Tools. [Online]. Available: http://www.emrl.de/JART#Artikel_1
  20. C.-Y. Huang, W. C. Shen, Y.-H. Tseng, Y.-C. King, and C.-J. Lin, “A contact-resistive random-access-memory-based true random number generator,” IEEE Electron Device Letters, vol. 33, no. 8, pp. 1108–1110, 2012.
  21. Y. Liu, L. Chen, X. Li, Y. Liu, S. Hu, Q. Yu, T. Chen, and Y. Liu, “A dynamic aes cryptosystem based on memristive neural network,” Scientific Reports, vol. 12, no. 1, p. 12983, 2022.
  22. H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order,” Cryptology ePrint Archive, 2016.
  23. F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori, “Evaluation of hybrid memory technologies using sot-mram for on-chip cache hierarchy,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 3, pp. 367–380, 2015.
  24. G. Khedkar, C. Donahue, and D. Kudithipudi, “Towards leakage resiliency: memristor-based aes design for differential power attack mitigation,” in Machine Intelligence and Bio-inspired Computation: Theory and Applications VIII, vol. 9119.   SPIE, 2014, pp. 40–50.
  25. A. Joseph et al., “An analysis on low cost and performance of hardware and software oriented lightweight block ciphers for iot applications,” in Proceedings of the International Conference on IoT Based Control Networks & Intelligent Systems-ICICNIS, 2021.
  26. V. A. Thakor, M. A. Razzaque, and M. R. Khandaker, “Lightweight cryptography algorithms for resource-constrained iot devices: A review, comparison and research opportunities,” IEEE Access, vol. 9, pp. 28 177–28 193, 2021.
  27. N. M. Naser and J. R. Naif, “A systematic review of ultra-lightweight encryption algorithms,” International Journal of Nonlinear Analysis and Applications, vol. 13, no. 1, pp. 3825–3851, 2022.
  28. S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “Gift: A small present: Towards reaching the limit of lightweight encryption,” in Cryptographic Hardware and Embedded Systems–CHES 2017: 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings.   Springer, 2017, pp. 321–345.
  29. M. A. Siddiqi, R. H. Beurskens, P. Kruizinga, C. I. De Zeeuw, and C. Strydis, “Securing implantable medical devices using ultrasound waves,” IEEE Access, vol. 9, pp. 80 170–80 182, 2021.
  30. N. TaheriNejad, “Sixor: Single-cycle in-memristor XOR,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 5, pp. 925–935, 2021.
  31. S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.
  32. L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and S. Hamdioui, “Scouting logic: A novel memristor-based logic design for resistive computing,” in 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).   IEEE, 2017, pp. 176–181.
  33. Z.-R. Wang, Y.-T. Su, Y. Li, Y.-X. Zhou, T.-J. Chu, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S. M. Sze, and X.-S. Miao, “Functionally complete boolean logic in 1t1r resistive random access memory,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 179–182, 2016.
  34. W. Shen, P. Huang, M. Fan, R. Han, Z. Zhou, B. Gao, H. Wu, H. Qian, L. Liu, X. Liu et al., “Stateful logic operations in one-transistor-one-resistor resistive random access memory array,” IEEE Electron Device Letters, vol. 40, no. 9, pp. 1538–1541, 2019.
  35. S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Memristor-based material implication (imply) logic: Design principles and methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2013.
  36. S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G. Friedman, “Mrl—memristor ratioed logic,” in 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.   IEEE, 2012, pp. 1–6.
  37. I. Vourkas and G. C. Sirakoulis, “A novel design and modeling paradigm for memristor-based crossbar circuits,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1151–1159, 2012.
  38. G. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. C. Sirakoulis, “Boolean logic operations and computing circuits based on memristors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 12, pp. 972–976, 2014.
  39. S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-transfer torque magnetic ram,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483, 2017.
  40. A. K. Mishra, D. P. Acharya, and P. K. Patra, “Novel design technique of address decoder for sram,” in 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies.   IEEE, 2014, pp. 1032–1035.
  41. S. Singh and S. Akashe, “Low power consuming 1 kb (32×\times× 32) memory array using compact 7t sram cell,” Wireless Personal Communications, vol. 96, pp. 1099–1109, 2017.
  42. J. Wu, F. Mo, T. Saraya, T. Hiramoto, and M. Kobayashi, “A monolithic 3-d integration of rram array and oxide semiconductor fet for in-memory computing in 3-d neural network,” IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5322–5328, 2020.
  43. M. Ezzadeen, D. Bosch, B. Giraud, S. Barraud, J.-P. Noel, D. Lattard, J. Lacord, J.-M. Portal, and F. Andrieu, “Ultrahigh-density 3-d vertical rram with stacked junctionless nanowires for in-memory-computing applications,” IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4626–4630, 2020.

Summary

We haven't generated a summary for this paper yet.