UAlign: Pushing the Limit of Template-free Retrosynthesis Prediction with Unsupervised SMILES Alignment (2404.00044v2)
Abstract: Motivation: Retrosynthesis planning poses a formidable challenge in the organic chemical industry. Single-step retrosynthesis prediction, a crucial step in the planning process, has witnessed a surge in interest in recent years due to advancements in AI for science. Various deep learning-based methods have been proposed for this task in recent years, incorporating diverse levels of additional chemical knowledge dependency. Results: This paper introduces UAlign, a template-free graph-to-sequence pipeline for retrosynthesis prediction. By combining graph neural networks and Transformers, our method can more effectively leverage the inherent graph structure of molecules. Based on the fact that the majority of molecule structures remain unchanged during a chemical reaction, we propose a simple yet effective SMILES alignment technique to facilitate the reuse of unchanged structures for reactant generation. Extensive experiments show that our method substantially outperforms state-of-the-art template-free and semi-template-based approaches. Importantly, our template-free method achieves effectiveness comparable to, or even surpasses, established powerful template-based methods. Scientific contribution: We present a novel graph-to-sequence template-free retrosynthesis prediction pipeline that overcomes the limitations of Transformer-based methods in molecular representation learning and insufficient utilization of chemical information. We propose an unsupervised learning mechanism for establishing product-atom correspondence with reactant SMILES tokens, achieving even better results than supervised SMILES alignment methods. Extensive experiments demonstrate that UAlign significantly outperforms state-of-the-art template-free methods and rivals or surpasses template-based approaches, with up to 5\% (top-5) and 5.4\% (top-10) increased accuracy over the strongest baseline.
- Chen S, Jung Y (2021) Deep retrosynthetic reaction prediction using local reactivity and global attention. JACS Au 1(10):1612–1620 Chen et al [2023] Chen Z, Ayinde OR, Fuchs JR, et al (2023) G 2 retro as a two-step graph generative models for retrosynthesis prediction. Communications Chemistry 6. 10.1038/s42004-023-00897-3 Coley et al [2017] Coley CW, Rogers L, Green WH, et al (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS central science 3(12):1237–1245 Corey [1991] Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Chen Z, Ayinde OR, Fuchs JR, et al (2023) G 2 retro as a two-step graph generative models for retrosynthesis prediction. Communications Chemistry 6. 10.1038/s42004-023-00897-3 Coley et al [2017] Coley CW, Rogers L, Green WH, et al (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS central science 3(12):1237–1245 Corey [1991] Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Coley CW, Rogers L, Green WH, et al (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS central science 3(12):1237–1245 Corey [1991] Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Chen Z, Ayinde OR, Fuchs JR, et al (2023) G 2 retro as a two-step graph generative models for retrosynthesis prediction. Communications Chemistry 6. 10.1038/s42004-023-00897-3 Coley et al [2017] Coley CW, Rogers L, Green WH, et al (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS central science 3(12):1237–1245 Corey [1991] Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Coley CW, Rogers L, Green WH, et al (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS central science 3(12):1237–1245 Corey [1991] Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Coley CW, Rogers L, Green WH, et al (2017) Computer-assisted retrosynthesis based on molecular similarity. ACS central science 3(12):1237–1245 Corey [1991] Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Corey EJ (1991) The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (nobel lecture). Angewandte Chemie International Edition in English 30(5):455–465 Dai et al [2019] Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Dai H, Li C, Coley C, et al (2019) Retrosynthesis prediction with conditional graph logic network. Advances in Neural Information Processing Systems 32 Fey and Lenssen [2019] Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds Hu et al [2019] Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Hu W, Liu B, Gomes J, et al (2019) Strategies for pre-training graph neural networks. In: International Conference on Learning Representations Hu et al [2020] Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Hu W, Fey M, Zitnik M, et al (2020) Open graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33:22118–22133 Igashov et al [2023] Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Igashov I, Schneuing A, Segler M, et al (2023) Retrobridge: Modeling retrosynthesis with markov bridges. In: The Twelfth International Conference on Learning Representations Jin et al [2017] Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Jin W, Coley C, Barzilay R, et al (2017) Predicting organic reaction outcomes with weisfeiler-lehman network. Advances in neural information processing systems 30 Kim et al [2021] Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Kim E, Lee D, Kwon Y, et al (2021) Valid, plausible, and diverse retrosynthesis using tied two-way transformers with latent variables. Journal of Chemical Information and Modeling 61(1):123–133 Kingma and Ba [2014] Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 Landrum et al [2013] Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Landrum G, et al (2013) Rdkit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 8:31 Lee et al [2019] Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Lee J, Lee Y, Kim J, et al (2019) Set transformer: A framework for attention-based permutation-invariant neural networks. In: Chaudhuri K, Salakhutdinov R (eds) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol 97. PMLR, pp 3744–3753, URL https://proceedings.mlr.press/v97/lee19d.html Lin et al [2020] Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Lin K, Xu Y, Pei J, et al (2020) Automatic retrosynthetic route planning using template-free models. Chemical science 11(12):3355–3364 Liu et al [2017] Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Liu B, Ramsundar B, Kawthekar P, et al (2017) Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science 3(10):1103–1113 Paszke et al [2019] Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Paszke A, Gross S, Massa F, et al (2019) Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 Rong et al [2020] Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Rong Y, Bian Y, Xu T, et al (2020) Self-supervised graph transformer on large-scale molecular data. In: Larochelle H, Ranzato M, Hadsell R, et al (eds) Advances in Neural Information Processing Systems, vol 33. Curran Associates, Inc., pp 12559–12571, URL https://proceedings.neurips.cc/paper_files/paper/2020/file/94aef38441efa3380a3bed3faf1f9d5d-Paper.pdf Sacha et al [2021] Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Sacha M, Błaz M, Byrski P, et al (2021) Molecule edit graph attention network: modeling chemical reactions as sequences of graph edits. Journal of Chemical Information and Modeling 61(7):3273–3284 Schwaller et al [2019] Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Schwaller P, Laino T, Gaudin T, et al (2019) Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS central science 5(9):1572–1583 Segler and Waller [2017] Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Segler MH, Waller MP (2017) Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal 23(25):5966–5971 Seo et al [2021] Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Seo SW, Song YY, Yang JY, et al (2021) Gta: Graph truncated attention for retrosynthesis. Proceedings of the AAAI Conference on Artificial Intelligence 35(1):531–539. 10.1609/aaai.v35i1.16131, URL https://ojs.aaai.org/index.php/AAAI/article/view/16131 Shi et al [2020] Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosynthesis prediction. In: International conference on machine learning, PMLR, pp 8818–8827 Somnath et al [2021] Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Somnath VR, Bunne C, Coley C, et al (2021) Learning graph models for retrosynthesis prediction. Advances in Neural Information Processing Systems 34:9405–9415 Tetko et al [2020] Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Tetko IV, Karpov P, Van Deursen R, et al (2020) State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Nature communications 11(1):5575 Tu and Coley [2022] Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Tu Z, Coley CW (2022) Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction. Journal of chemical information and modeling 62(15):3503–3513 Ucak et al [2022] Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Ucak UV, Ashyrmamatov I, Ko J, et al (2022) Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nature communications 13(1):1186 Vaswani et al [2017] Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. Advances in neural information processing systems 30 Veličković et al [2018] Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Veličković P, Cucurull G, Casanova A, et al (2018) Graph attention networks. In: International Conference on Learning Representations Vijayakumar et al [2016] Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Vijayakumar AK, Cogswell M, Selvaraju RR, et al (2016) Diverse beam search: Decoding diverse solutions from neural sequence models. arXiv preprint arXiv:161002424 Wan et al [2022] Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Wan Y, Hsieh CY, Liao B, et al (2022) Retroformer: Pushing the limits of end-to-end retrosynthesis transformer. In: International Conference on Machine Learning, PMLR, pp 22475–22490 Wang et al [2021] Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Wang X, Li Y, Qiu J, et al (2021) Retroprime: A diverse, plausible and transformer-based method for single-step retrosynthesis predictions. Chemical Engineering Journal 420. 10.1016/j.cej.2021.129845 Wu et al [2022] Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Wu Q, Zhao W, Li Z, et al (2022) Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems 35:27387–27401 Xie et al [2023] Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Xie S, Yan R, Guo J, et al (2023) Retrosynthesis prediction with local template retrieval. Proceedings of the AAAI Conference on Artificial Intelligence 37(4):5330–5338. 10.1609/aaai.v37i4.25664, URL https://ojs.aaai.org/index.php/AAAI/article/view/25664 Yan et al [2020] Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Yan C, Ding Q, Zhao P, et al (2020) Retroxpert: Decompose retrosynthesis prediction like a chemist. Advances in Neural Information Processing Systems 33:11248–11258 Yang et al [2023] Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Yang N, Zeng K, Wu Q, et al (2023) Molerec: Combinatorial drug recommendation with substructure-aware molecular representation learning. In: Proceedings of the ACM Web Conference 2023, pp 4075–4085 Yao et al [2024] Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Yao L, Guo W, Wang Z, et al (2024) Node-aligned graph-to-graph: Elevating template-free deep learning approaches in single-step retrosynthesis. JACS Au Zheng et al [2019] Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Zheng S, Rao J, Zhang Z, et al (2019) Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of chemical information and modeling 60(1):47–55 Zhong et al [2022] Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034 Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034
- Zhong Z, Song J, Feng Z, et al (2022) Root-aligned smiles: a tight representation for chemical reaction prediction. Chemical Science 13(31):9023–9034