Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visualization of Unstructured Sports Data -- An Example of Cricket Short Text Commentary (2404.00030v1)

Published 22 Mar 2024 in cs.HC and cs.LG

Abstract: Sports visualization focuses on the use of structured data, such as box-score data and tracking data. Unstructured data sources pertaining to sports are available in various places such as blogs, social media posts, and online news articles. Sports visualization methods either not fully exploited the information present in these sources or the proposed visualizations through the use of these sources did not augment to the body of sports visualization methods. We propose the use of unstructured data, namely cricket short text commentary for visualization. The short text commentary data is used for constructing individual player's strength rules and weakness rules. A computationally feasible definition for player's strength rule and weakness rule is proposed. A visualization method for the constructed rules is presented. In addition, players having similar strength rules or weakness rules is computed and visualized. We demonstrate the usefulness of short text commentary in visualization by analyzing the strengths and weaknesses of cricket players using more than one million text commentaries. We validate the constructed rules through two validation methods. The collected data, source code, and obtained results on more than 500 players are made publicly available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R.  J. Mooney and R. Bunescu, “Mining knowledge from text using information extraction”, SIGKDD Explor. Newsl., vol. 7, no. 1, pp. 3-10, 2005.
  2. F. Beil, M. Ester, and X. Xu, “Frequent term-based text clustering”, In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, New York, USA, pp. 436-442, 2002.
  3. B. Sriram, D. Fuhry, E. Demir, H. Ferhatosmanoglu, and M. Demirbas, “Short text classification in twitter to improve information filtering”, In Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval, ACM, New York, USA, pp. 841-842, 2010.
  4. T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes Twitter users: real-time event detection by social sensors”, In Proceedings of the 19th international conference on World wide web, ACM, New York, USA, pp. 851-860, 2010.
  5. K. Kucher and A. Kerren, “Text visualization techniques: Taxonomy, visual survey, and community insights”, IEEE Pacific Visualization Symposium, Hangzhou, pp. 117-121, 2015.
  6. B. Y-L. Kuo, T. Hentrich, B. M. Good, and M. D. Wilkinson, “Tag clouds for summarizing web search results”, In Proceedings of the 16th international conference on World Wide Web, ACM, New York, USA, pp. 1203-1204, 2007.
  7. K. Yatani, M. Novati, A. Trusty, and K. N. Truong, “Review spotlight: a user interface for summarizing user-generated reviews using adjective-noun word pairs” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, USA, pp. 1541-1550, 2011.
  8. M. Hao, C. Rohrdantz, H. Janetzko, U. Dayal, D. A. Keim, L. Haug and M. Hsu “Visual sentiment analysis on twitter data streams”, IEEE Conference on Visual Analytics Science and Technology, Providence, RI, pp. 277-278, 2011.
  9. S. Liu, J. Yin, X. Wang, W. Cui, K. Cao and J. Pei, “Online Visual Analytics of Text Streams”, IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 11, pp. 2451-2466, 2016.
  10. N. V. T. Nguyen, V. T. Nguyen, V. Pham and T. Dang, “FinanViz: Visualizing Emerging Topics in Financial News”, IEEE International Conference on Big Data, Seattle, WA, USA, pp. 4698-4704, 2018.
  11. C. Perin, R. Vuillemot, C. Stolper, J. Stasko, J. Wood, “State of the Art of Sports Data Visualization” Computer Graphics Forum, Wiley, vol. 37, no. 3, pp. 1-24, 2018.
  12. K. Wongsuphasawat, “A Narrative Display for Sports Tournament Recap”, In 1st Workshop on Sports Data Visualization, IEEE VIS, 2013.
  13. A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and R. C. Miller, “Twitinfo: aggregating and visualizing microblogs for event exploration”, In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, USA, pp. 227-236. 2011.
  14. A. Das, A. Srinivasan, and J. Stasko “CricVis: Interactive Visual Exploration and Analysis of Cricket Matches”, IEEE VIS, 2017.
  15. C. Perin, R. Vuillemot, C. D. Stolper, J. T. Stasko, J. Wood, S. Carpendale, “State of the Art of Sports Data Visualization”, Computer Graphics Forum, vol. 37, pp. 663-686, 2018.
  16. A. Cox and J. Stasko, “Sportsvis: Discovering meaning in sports statistics through information visualization”, In Compendium of Symposium on Information Visualization, pp. 114-115, 2006.
  17. P. Beshai “Buckets: Basketball Shot Visualization”.
  18. Y. Wu, X. Xie, J. Wang, D. Deng, H. Liang, H. Zhang, S. Cheng, and W. Chen, “Forvizor: Visualizing spatio-temporal team formations in soccer”, IEEE Transactions on Visualization and Computer Graphics, 2018.
  19. C. Dietrich, D. Koop, H. T. Vo, and C. T. Silva, “Baseball4d: A tool for baseball game reconstruction visualization”, in IEEE Conference on Visual Analytics Science and Technology, pp. 23-32, 2014.
  20. A. B. Alencar, M. C.F. de Oliveira, and F .V. Paulovich, “Seeing beyond reading: A survey on visual text analytics”, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 2, pp. 476-492, 2012.
  21. F. B. Viegas, M. Wattenberg, and J. Feinberg, “Participatory visualization with wordle”, IEEE Transactions on Visualization and Computer Graphics, vol. 15, pp. 1137-1144, 2009.
  22. M. Wattenberg and F. B. Viegas, “The Word Tree, an interactive visual concordance”, IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp. 1221-1228, 2008.
  23. A. Skupin, “A cartographic approach to visualizing conference abstracts”, IEEE Computer Graphics Application., vol. 22, pp. 50-58, 2002.
  24. K. Andrews, W. Kienreich, V. Sabol, J. Becker, G. Droschl, F. Kappe, M. Granitzer, P. Auer, and K. Tochtermann, “The InfoSky visual explorer: exploiting hierarchical structure and document similarities”, Information Visualization, vol. 1, pp. 166-181, 2002.
  25. B. Lee, N. H. Riche,A. K.Karlson, and S. Carpendale, “SparkClouds: Visualizing trends in tag clouds”, IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1182-1189, 2010.
  26. S. Havre, E. Hetzler, P. Whitney, and L. Nowell, “ThemeRiver: Visualizing thematic changes in large document collections”, IEEE Transactions on Visualization and Computer Graphics, vol. 8, pp. 9-20, 2002.
  27. D. Steinbock, “TagCrowd”, Available online: http://www.tagcrowd.com/blog/about/.
  28. M. Hu, K. Wongsuphasawat, and J. Stasko, “Visualizing Social Media Content with SentenTree”, IEEE Transactions on Visualization and Computer Graphics, vol. 23, no. 1, pp. 621-630, 2017.
  29. S. Joty, G. Carenini, and R. T. Ng., “Topic segmentation and labeling in asynchronous conversations”, Journal of Artificial Intelligence Research, vol. 47, pp. 521-573, 2013.
  30. M. Gao, H. Do, W. Fu, “An Intelligent Interface for Organizing Online Opinions on Controversial Topics”, Proceedings of the 22Nd International Conference on Intelligent User Interfaces, vol. 5, pp. 119-123, 2017.
  31. M. Greenacre, “Correspondence analysis in medical research”, Statistical Methods in Medical Research, vol. 1, no. 1, pp. 97-117, 1992.
  32. E. J. Beh and R. Lombardo, “Correspondence Analysis: Theory, Practice and New Strategies”, Wiley Series in Probability and Statistics, Wiley, 2014.
  33. M. Greenacre, “Correspondence analysis in Practice”, Chapman & Hall / CRC Interdisciplinary Statistics Series, CRC Press, Taylor & Francis, 2017.
  34. C. D. Meyer, “Matrix Analysis and Applied Linear Algebra”, Other Titles in Applied Mathematics, Society for Industrial and Applied Mathematics, 2000.
  35. K. R. Gabriel, “The biplot graphic display of matrices with application to principal component analysis”. Biometrika, vol. 58, no. 3, pp. 453-467, 1971.
  36. L. J. P. van der Maaten and G. E. Hinton, “Visualizing High-Dimensional Data Using t-SNE”, Journal of Machine Learning Research vol. 9, pp. 2579-2605, 2008.
  37. J. C. Gower and G. B. Dijksterhuis, “Procrustes problems”, ser. Oxford Statistical Science Series, Oxford, UK: Oxford University Press, vol. 30, 2004.
  38. P. R. Peres-Neto and D. A. Jackson, “How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test”, Oecologia, vol. 129, pp. 169-178, 2001.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com