Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative Sensing and Communication for ISAC Networks: Performance Analysis and Optimization (2403.20228v3)

Published 29 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: In this work, we study integrated sensing and communication (ISAC) networks intending to effectively balance sensing and communication (S&C) performance at the network level. Through the simultaneous utilization of multi-point (CoMP) coordinated joint transmission and distributed multiple-input multiple-output (MIMO) radar techniques, we propose a cooperative networked ISAC scheme to enhance both S&C services. Then, the tool of stochastic geometry is exploited to capture the S&C performance, which allows us to illuminate key cooperative dependencies in the ISAC network. Remarkably, the derived expression of the Cramer-Rao lower bound (CRLB) of the localization accuracy unveils a significant finding: Deploying $N$ ISAC transceivers yields an enhanced sensing performance across the entire network, in accordance with the $\ln2N$ scaling law. Simulation results demonstrate that compared to the time-sharing scheme, the proposed cooperative ISAC scheme can effectively improve the average data rate and reduce the CRLB.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. F. Liu et al., “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  2. K. Meng et al., “Integrated sensing and communication meets smart propagation engineering: Opportunities and challenges,” arXiv preprint arXiv:2402.18683, 2024.
  3. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges,” IEEE Net., vol. 35, no. 5, pp. 158–167, Sep./Oct. 2021.
  4. K. Meng et al., “Throughput maximization for UAV-enabled integrated periodic sensing and communication,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 671–687, Jan. 2023.
  5. W. Shin, M. Vaezi, B. Lee, D. J. Love, J. Lee, and H. V. Poor, “Coordinated beamforming for multi-cell MIMO-NOMA,” IEEE Commun. Lett., vol. 21, no. 1, pp. 84–87, Jan. 2017.
  6. K. Hosseini, W. Yu, and R. S. Adve, “A stochastic analysis of network MIMO systems,” IEEE Trans. Signal Process., vol. 64, no. 16, pp. 4113–4126, Aug. 2016.
  7. J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to coverage and rate in cellular networks,” IEEE Trans. Commun., vol. 59, no. 11, pp. 3122–3134, Nov. 2011.
  8. W. Chen, L. Li, Z. Chen, B. Ning, G. Wang, and T. Quek, “An ISAC-based beam alignment approach for enhancing terahertz network coverage,” arXiv preprint arXiv:2212.01728, 2022.
  9. K. Meng, C. Masouros, G. Chen, and F. Liu, “Network-level integrated sensing and communication: Interference management and BS coordination using stochastic geometry,” arXiv preprint arXiv:2311.09052, 2023.
  10. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  11. X. Liu et al., “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.
  12. M. Sadeghi, F. Behnia, R. Amiri, and A. Farina, “Target localization geometry gain in distributed MIMO radar,” IEEE Trans. Signal Process., vol. 69, pp. 1642–1652, 2021.
  13. J. Li and R. Compton, “Maximum likelihood angle estimation for signals with known waveforms,” IEEE Trans. Signal Process., vol. 41, no. 9, pp. 2850–2862, 1993.
  14. J. Park, N. Lee, J. G. Andrews, and R. W. Heath, “On the optimal feedback rate in interference-limited multi-antenna cellular systems,” IEEE Trans. Wireless Commun., vol. 15, no. 8, pp. 5748–5762, Aug. 2016.
  15. J. Ghimire and C. Rosenberg, “Revisiting scheduling in heterogeneous networks when the backhaul is limited,” IEEE J. Sel. Areas Commun., vol. 33, no. 10, pp. 2039–2051, 2015.
  16. Q. Zhang, C. Yang, and A. F. Molisch, “Downlink base station cooperative transmission under limited-capacity backhaul,” IEEE Trans. Wireless Commun., vol. 12, no. 8, pp. 3746–3759, 2013.
  17. K. A. Hamdi, “A useful lemma for capacity analysis of fading interference channels,” IEEE Trans. Commun., vol. 58, no. 2, pp. 411–416, Feb. 2010.
  18. X. Zhang and M. Haenggi, “A stochastic geometry analysis of inter-cell interference coordination and intra-cell diversity,” IEEE Trans. Wireless Commun., vol. 13, no. 12, pp. 6655–6669, Dec. 2014.
Citations (2)

Summary

We haven't generated a summary for this paper yet.