Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ConvBench: A Multi-Turn Conversation Evaluation Benchmark with Hierarchical Capability for Large Vision-Language Models (2403.20194v2)

Published 29 Mar 2024 in cs.MM

Abstract: This paper presents ConvBench, a novel multi-turn conversation evaluation benchmark tailored for Large Vision-LLMs (LVLMs). Unlike existing benchmarks that assess individual capabilities in single-turn dialogues, ConvBench adopts a three-level multimodal capability hierarchy, mimicking human cognitive processes by stacking up perception, reasoning, and creativity. Each level focuses on a distinct capability, mirroring the cognitive progression from basic perception to logical reasoning and ultimately to advanced creativity. ConvBench comprises 577 meticulously curated multi-turn conversations encompassing 215 tasks reflective of real-world demands. Automatic evaluations quantify response performance at each turn and overall conversation level. Leveraging the capability hierarchy, ConvBench enables precise attribution of conversation mistakes to specific levels. Experimental results reveal a performance gap between multi-modal models, including GPT4-V, and human performance in multi-turn conversations. Additionally, weak fine-grained perception in multi-modal models contributes to reasoning and creation failures. ConvBench serves as a catalyst for further research aimed at enhancing visual dialogues.

Citations (6)

Summary

We haven't generated a summary for this paper yet.