Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Exponential Reverberation Modeling Using Dark Velvet Noise (2403.20090v1)

Published 29 Mar 2024 in eess.AS

Abstract: Previous research on late-reverberation modeling has mainly focused on exponentially decaying room impulse responses, whereas methods for accurately modeling non-exponential reverberation remain challenging. This paper extends the previously proposed basic dark-velvet-noise reverberation algorithm and proposes a parametrization scheme for modeling late reverberation with arbitrary temporal energy decay. Each pulse in the velvet-noise sequence is routed to a single dictionary filter that is selected from a set of filters based on weighted probabilities. The probabilities control the spectral evolution of the late-reverberation model and are optimized to fit a target impulse response via non-negative least-squares optimization. In this way, the frequency-dependent energy decay of a target late-reverberation impulse response can be fitted with mean and maximum T60 errors of 4% and 8%, respectively, requiring about 50% less coloration filters than a previously proposed filtered velvet-noise algorithm. Furthermore, the extended dark-velvet-noise reverberation algorithm allows the modeled impulse response to be gated, the frequency-dependent reverberation time to be modified, and the model's spectral evolution and broadband decay to be decoupled. The proposed method is suitable for the parametric late-reverberation synthesis of various acoustic environments, especially spaces that exhibit a non-exponential energy decay, motivating its use in musical audio and virtual reality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. R. Schoeder, “Natural Sounding Artificial Reverberation,” J. Audio Eng. Soc., vol. 10, no. 3, pp. 219–223 (1962 Jul.).
  2. V. Välimäki, J. D. Parker, L. Savioja, J. O. Smith, and J. S. Abel, “Fifty Years of Artificial Reverberation,” IEEE Trans. Audio Speech Lang. Process., vol. 20, no. 5, pp. 1421–1448 (2012 Jul.), https://doi.org/10.1109/TASL.2012.2189567.
  3. J. A. Moorer, “About This Reverberation Business,” Comput. Music J., vol. 3, no. 2, pp. 13–28 (1979 Jun.), https://doi.org/10.2307/3680280.
  4. P. Rubak and L. G. Johansen, “Artificial Reverberation Based on a Pseudo-Random Impulse Response: Part I,” presented at the 104th Convention of the Audio Engineering Society (1998 May), paper 4725.
  5. M. Karjalainen and H. Järveläinen, “Reverberation Modeling Using Velvet Noise,” in Proceedings of the 30th AES International Conference on Intelligent Audio (Saariselkä, Finland) (2007 Mar.).
  6. K. Spratt and J. S. Abel, “A Digital Reverberator Modeled After the Scattering of Acoustic Waves by Trees in a Forrest,” presented at the 125th Convention of the Audio Engineering Society (2008 Oct.), paper 7650.
  7. F. Stevens, D. T. Murphy, L. Savioja, and V. Välimäki, “Modeling Sparsely Reflecting Outdoor Acoustic Scenes Using the Waveguide Web,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 25, no. 8, pp. 1566–1578 (2017 Aug.), https://doi.org/10.1109/TASLP.2017.2699424.
  8. C. F. Eyring, “Reverberation Time Measurements in Coupled Rooms,” J. Acoust. Soc. Am., vol. 3, no. 2, pp. 181–206 (1931 Oct.).
  9. O. Das and J. S. Abel, “Grouped Feedback Delay Networks for Modeling of Coupled Spaces,” J. Audio Eng. Soc., vol. 69, no. 7/8, pp. 486–496 (2021 Jul.), https://doi.org/10.17743/jaes.2021.0026.
  10. C. Kirsch, T. Wendt, S. Van De Par, H. Hu, and S. D. Ewert, “Computationally-Efficient Simulation of Late Reverberation for Inhomogeneous Boundary Conditions and Coupled Rooms,” J. Audio Eng. Soc., vol. 71, no. 4, pp. 186–201 (2023 Apr.), https://doi.org/10.17743/jaes.2022.0053.
  11. P. Rubak and L. G. Johansen, “Artificial Reverberation Based on a Pseudo-Random Impulse Response: Part II,” presented at the 106th Convention of the Audio Enginering Society (1999 May), paper 4900.
  12. V. Välimäki, H.-M. Lehtonen, and M. Takanen, “A perceptual Study on Velvet Noise and Its Variants at Different Pulse Densities,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 21, no. 7, pp. 1481–1488 (2013 Jul.), https://doi.org/10.1109/TASL.2013.2255281.
  13. K. Lee, J. Abel, V. Välimäki, T. Stilson, and D. P. Berners, “The Switched Convolution Reverberator,” J. Audio Eng. Soc., vol. 60, no. 4, pp. 227–236 (2012 Apr.).
  14. V. Välimäki and K. Prawda, “Late-Reverberation Synthesis Using Interleaved Velvet-Noise Sequences,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 29, p. 1149–1160 (2021 Feb.), https://doi.org/10.1109/TASLP.2021.3060165.
  15. N. Meyer-Kahlen, S. J. Schlecht, and T. Lokki, “Perceptual Roughness of Spatially Assigned Sparse Noise for Rendering Reverberation,” J. Acoust. Soc. Am., vol. 150, no. 5, pp. 3521–3531 (2021 Nov.), https://doi.org/10.1121/10.0007048.
  16. J.-M. Jot, “An Analysis/Synthesis Approach to Real-time Artificial Reverberation,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 221–224 (1992 Mar.), https://doi.org/10.1109/ICASSP.1992.226080.
  17. B. Alary, A. Politis, S. Schlecht, and V. Välimäki, “Directional Feedback Delay Network,” J. Audio Eng. Soc., vol. 67, no. 10, pp. 752–762 (2019 Oct.), https://doi.org/10.17743/jaes.2019.0026.
  18. K. Prawda, V. Välimäki, and S. J. Schlecht, “Improved Reverberation Time Control for Feedback Delay Networks,” in Proceedings of the International Conference on Digital Audio Effects (DAFx) (Birmingham, UK) (2019 Sep.).
  19. S. J. Schlecht and E. A. P. Habets, “Scattering in Feedback Delay Networks,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 28, p. 1915–1924 (2020 Jun.), https://doi.org/10.1109/TASLP.2020.3001395.
  20. O. Das, J. S. Abel, and E. K. Canfield-Dafilou, “Delay Network Architectures for Room and Coupled Space Modeling,” in Proceedings of the International Conference on Digital Audio Effects (DAFx), pp. 234–241 (Vienna, Austria) (2020 Sep.).
  21. J. Fagerström, B. Alary, S. J. Schlecht, and V. Välimäki, “Velvet-Noise Feedback Delay Network,” in Proceedings of the International Conference on Digital Audio Effects (DAFx), pp. 219–226 (Vienna, Austria) (2020 Sep.).
  22. E. Piirilä, T. Lokki, and V. Välimäki, “Digital Signal Processing Techniques for Non-exponentially Decaying Reverberation,” in Proceedings of the COST-G6 Workshop on Digital Audio Effects, pp. 21–24 (Barcelona, Spain) (1998 Nov.).
  23. K.-S. Lee and J. S. Abel, “A Reverberator with Two-Stage Decay and Onset Time Controls,” presented at the Audio Engineering Society 129th Convention (2010 Nov.), paper 10287.
  24. N. Meyer-Kahlen, S. J. Schlecht, and T. Lokki, “Fade-in Control for Feedback Delay Networks,” in Proceedings of the International Conference on Digital Audio Effects (DAFx), pp. 227–233 (Vienna, Austria) (2020 Sep.).
  25. M. Karjalainen and H. Järveläinen, “More About This Reverberation Science: Perceptually Good Late Reverberation,” presented at the 111th Convention of the Audio Engineering Society (2001 Sep.), paper 5415.
  26. J. S. Abel, S. Coffin, and K. Spratt, “A Modal Architecture for Artificial Reverberation with Application to Room Acoustics Modeling,” presented at the 137th Convention of the Audio Engineering Society (2014 Oct.), paper 9208.
  27. J. J. Wells, “Modal Decompositions of Impulse Responses for Parametric Interaction,” J. Audio Eng. Soc., vol. 69, no. 7/8, pp. 530–541 (2021 Jul.), https://doi.org/10.17743/jaes.2021.0027.
  28. C. Hold, T. McKenzie, G. Götz, S. J. Schlecht, and V. Pulkki, “Resynthesis of Spatial Room Impulse Response Tails with Anisotropic Multi-Slope Decays,” J. Audio Eng. Soc., vol. 70, no. 6, pp. 526–538 (2022 Jun.).
  29. B. Holm-Rasmussen, H.-M. Lehtonen, and V. Välimäki, “A New Reverberator Based on Variable Sparsity Convolution,” in Proceedings of the International Conference on Digital Audio Effects (DAFx), pp. 344–350 (Maynooth, Ireland) (2013 Sep.).
  30. V. Välimäki, B. Holm-Rasmussen, B. Alary, and H.-M. Lehtonen, “Late Reverberation Synthesis Using Filtered Velvet Noise,” Appl. Sci., vol. 7, no. 5 (2017 May), https://doi.org/10.3390/app7050483.
  31. J. Fagerström, N. Meyer-Kahlen, S. J. Schlecht, and V. Välimäki, “Dark Velvet Noise,” in Proceedings of the International Conference on Digital Audio Effects (DAFx), pp. 192–199 (Vienna, Austria) (2022 Sep.).
  32. C. L. Lawson and R. J. Hanson, “Linear Least Squares with Linear Inequality Constraints,” in Solving Least-Squares Problems, p. 161 (Prentice Hall, Upper Saddle River, NJ, 1974).
  33. N. Meyer-Kahlen, S. J. Schlecht, and V. Välimäki, “Colours of Velvet Noise,” Electron. Lett., vol. 58, no. 12, pp. 495–497 (2022 Jun.), https://doi.org/10.1049/ell2.12501.
  34. J. Pekonen and V. Välimäki, “Filter-Based Alias Reduction for Digital Classical Waveform Synthesis,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 133–136 (Las Vegas, NV) (2008 May), https://doi.org/10.1109/ICASSP.2008.4517564.
  35. D. T. Murphy and S. Shelley, “OpenAIR: An Interactive Auralization Web Resource and Database,” presented at the 129th Convention of the Audio Engineering Society (2010 Nov.), paper 8226.
  36. E. K. Canfield-Dafilou and J. S. Abel, “Resizing Rooms in Convolution, Delay Network, and Modal Reverberators,” in Proceedings of the International Conference on Digital Audio Effects (DAFx), pp. 229–236 (Aveiro, Portugal) (2018 Sep.).

Summary

We haven't generated a summary for this paper yet.