2000 character limit reached
Hochschild cohomology of the quadratic monomial algebra ${\rm N}_m$ (2403.20074v1)
Published 29 Mar 2024 in math.RA
Abstract: Let ${\rm N}m(R) = { (a{ij}) \in {\rm M}m(R) \mid a{11} = a_{22} = \cdots = a_{mm} \mbox{ and } a_{ij} = 0 \mbox{ for any } i > j }$ for a commutative ring $R$. Then ${\rm N}_m(R)$ is a quadratic monomial algebra over $R$. We calculate ${\rm HH}{\ast}({\rm N}_m(R), {\rm M}_m(R)/{\rm N}_m(R))$ as $R$-modules. We also determine the $R$-algebra structure of the Hochschild cohomology ring ${\rm HH}{\ast}({\rm N}_m(R), {\rm N}_m(R))$. For $m \ge 3$, ${\rm HH}{\ast}({\rm N}_m(R), {\rm N}_m(R))$ is an infinitely generated algebra over $R$ and has no Batalin-Vilkovisky algebra structure giving the Gerstenhaber bracket.