Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Solutions of Stochastic Burgers-KdV Equation with variable coefficients (2403.19959v1)

Published 29 Mar 2024 in math-ph and math.MP

Abstract: We will present exact solutions for three variations of stochastic Korteweg de Vries-Burgers (KdV-Burgers) equation featuring variable coefficients. In each variant, white noise exhibits spatial uniformity, and the three categories include additive, multiplicative, and advection noise. Across all cases, the coefficients are time-dependent functions. Our discovery indicates that solving certain deterministic counterparts of KdV-Burgers equations and composing the solution with a solution of stochastic differential equations leads to the exact solution of the stochastic Korteweg de Vries-Burgers (KdV-Burgers) equations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. A. Alabert, I. Gyongy, On numerical approximation of stochastic Burgers’ equation, in: From Stochastic Calculus to Mathematical Finance, Springer, Berlin, Heidelberg, (2006), 1–15.
  2. L. Bertini, N. Cancrini and G. Jona-Lasinio, The stochastic Burgers equation, Communications in Mathematical Physics, 165 (1994), 211–232.
  3. L. Bertini and G. Giacomin, Stochastic Burgers and KPZ equations from particle systems, Communications in Mathematical Physics, 183 (1997), 571–607.
  4. D. Blomker and A. Jentzen, Galerkin approximations for the stochastic Burgers equation, SIAM Journal of Numerical Analysis, 51 (2013), 694–715.
  5. J. M. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, 1 (1948), 171–199.
  6. O. Calin, An Informal Introduction to Stochastic Calculus with Applications, World Scientific, 2015.
  7. G. Casella and R. L. Berger, Statistical Inference, Duxbury advanced series in statistics and decision sciences, Thomson Learning, 2002.
  8. P. Catuogno and C. Olivera, Strong solution of the stochastic Burgers equation, Applicable Analysis, 93 (2014), 646–652.
  9. G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers’ equation, Nonlinear Differential Equations and Applications, 1 (1994), 389–402.
  10. P. Düben, D. Homeier, K. Jansen, D. Mesterhazy, G. Münster and C. Urbach, Monte Carlo simulations of the randomly forced Burgers equation, EPL Journal, 84 (2008), 1–4.
  11. S. Eule and R. Friedrich, A note on the forced Burgers equation, Physics Letters A: General, Atomic and Solid State Physics, 351 (2006), 234–241.
  12. I. Gyöngy and D. Nualart, On the stochastic Burgers’ equation in the real line, The Annals of Probability, 27 (1999), 782–802.
  13. M. Hairer and J. Voss, Approximations to the stochastic burgers equation, Journal of Nonlinear Science, 21 (2011), 897–920.
  14. H. Holden, T. Lindstrøm, B. øksendal, J. Ubøe and T. Zhang, The Burgers equation with a noisy force and the stochastic heat equation, Communications in Partial Differential Equations, 19 (1994), 119–141.
  15. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, Heidelberg, 1992.
  16. P. Lewis and D. Nualart, Stochastic Burgers’ equation on the real line: regularity and moment estimates, Stochastics, 90 (2018), 1053–1086.
  17. E. Pereira, E. Suazo and J. Trespalacios, Riccati – Ermakov systems and explicit solutions for variable coefficient reaction – diffusion equations, Applied Mathematics and Computation, 329 (2018), 278–296.
  18. A. Truman and H. Z. Zhao, On stochastic diffusion equations and stochastic Burgers’ equations, Journal of Mathematical Physics, 37 (1996), 283–307.
  19. E. Weinan, Stochastic hydrodynamics, Current Developments in Mathematics, (2000), 66p.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets