2000 character limit reached
Parameter choice strategies for regularized least squares approximation of noisy continuous functions on the unit circle (2403.19927v2)
Published 29 Mar 2024 in math.NA and cs.NA
Abstract: In this paper, we consider a trigonometric polynomial reconstruction of continuous periodic functions from their noisy values at equidistant nodes of the unit circle by a regularized least squares method. We indicate that the constructed trigonometric polynomial can be determined in explicit due to the exactness of trapezoidal rule. Then a concrete error bound is derived based on the estimation of Lebesgue constants. In particular, we analyze three regularization parameter choice strategies: Morozov's discrepancy principal, L-curve and generalized cross-validation. Finally, numerical examples are given to perform that well chosen parameters by above strategies can improve the quality of approximation significantly.
- Lasso trigonometric polynomial approximation for periodic function recovery in equidistant points. Applied Numerical Mathematics 194 (2023), 115–130.
- Regularized least squares approximations on the sphere using spherical designs. SIAM Journal on Numerical Analysis 50, 3 (2012), 1513–1534.
- Tikhonov regularization for polynomial approximation problems in Gauss quadrature points. Inverse Problems 37, 1 (2020), 015008.
- Lasso hyperinterpolation over general regions. SIAM Journal on Scientific Computing 43, 6 (2021), A3967–A3991.
- On the quadrature exactness in hyperinterpolation. BIT Numerical Mathematics 62, 4 (Dec 2022), 1899–1919.
- Aronszajn, N. Theory of reproducing kernels. Transactions of the American Mathematical Society 68, 3 (1950), 337–404.
- On the numerical stability of the second barycentric formula for trigonometric interpolation in shifted equispaced points. IMA Journal of Numerical Analysis 37, 3 (08 2016), 1355–1374.
- Bakushinskii, A. Remarks on choosing a regularization parameter using the quasi-optimality and ratio criterion. USSR Computational Mathematics and Mathematical Physics 24, 4 (1984), 181–182.
- Berrut, J. P. Baryzentrische formeln zur trigonometrischen interpolation (i). Zeitschrift für angewandte Mathematik und Physik ZAMP 35, 1 (1984), 91–105.
- Barycentric Lagrange interpolation. SIAM Review 46, 3 (2004), 501–517.
- A simple algorithm to find the L-curve corner in the regularisation of ill-posed inverse problems. IOP SciNotes 1, 2 (aug 2020), 025004.
- Constructive Approximation. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1993.
- Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 2 (1979), 215–223.
- Generalized cross-validation for large-scale problems. Journal of Computational and Graphical Statistics 6, 1 (1997), 1–34.
- Hanke, M. Limitations of the L-curve method in ill-posed problems. BIT Numerical Mathematics 36, 2 (1996), 287–301.
- Hansen, P. C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review 34, 4 (1992), 561–580.
- Hansen, P. C. The L-curve and its use in the numerical treatment of inverse problems. Computational Inverse Problems in Electrocardiology 4 (01 2001), 119–142.
- Hansen, P. C. Regularization tools version 4.0 for matlab 7.3. Numerical Algorithms 46, 2 (2007), 189–194.
- The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing 14, 6 (1993), 1487–1503.
- Henrici, P. Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numerische Mathematik 33, 2 (1979), 225–234.
- L2subscript𝐿2{L}_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT error estimates for polynomial discrete penalized least-squares approximation on the sphere from noisy data. Journal of Computational and Applied Mathematics 408 (2022), 114118.
- Hyperinterpolation on the sphere. In: Frontiers in Interpolation and Approximation(Dedicated to the Memory of Ambikeshwar Sharma) (eds.: N. K. Govil, H. N. Mhaskar, Ram N. Mohapatra, Zuhair Nashed and J. Szabados). Champman &\&& Hall/CRC (2006), 213–248.
- Jackson, D. Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische summen gegebener Ordnung. Göttingen: Dieterich, 1911.
- Kress, R. Numerical Analysis. Graduate Texts in Mathematics vol 181. Springer, New York, 1998.
- Regularization Theory for Ill-posed Problems: Selected Topics. Inverse and ill-posed problems series. Walter de Gruyter GmbH & Company KG, 2013.
- Mhaskar, H. N. Polynomial operators and local smoothness classes on the unit interval. Journal of Approximation Theory 131, 2 (2004), 243–267.
- Mhaskar, H. N. Polynomial operators and local smoothness classes on the unit interval, ii. Jaen Journal on Approximation Theorem 1 (2005), 1–25.
- Mhaskar, H. N. A direct approach for function approximation on data defined manifolds. Neural Networks 132 (2020), 253–268.
- Spherical Marcinkiewicz–Zygmund inequalities and positive quadrature. Mathematics of Computation 70, 235 (2001), 1113–1130.
- Filtered Legendre expansion method for numerical differentiation at the boundary point with application to blood glucose predictions. Applied Mathematics and Computation 224 (2013), 835–847.
- A deep learning approach to diabetic blood glucose prediction. Frontiers in Applied Mathematics and Statistics 3 (2017), 14.
- Morozov, V. A. On the solution of functional equations by the method of regularization. Doklady Mathematics 7 (1966), 414–417.
- Nursultanov, E. D. Nikol’skii’s inequality for different metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space. Proceedings of the Steklov Institute of Mathematics 255, 1 (2006), 185–202.
- Pereverzyev, S. An introduction to artificial intelligence based on reproducing kernel Hilbert spaces. Springer Nature, 2022.
- Parameter choice strategies for least-squares approximation of noisy smooth functions on the sphere. SIAM Journal on Numerical Analysis 53, 2 (2015), 820–835.
- An algorithm for estimating the optimal regularization parameter by the L-curve. Rendiconti di Matematica, Serie VII 25 (01 2005), 69–84.
- Salzer, H. E. Coefficients for facilitating trigonometric interpolation. Journal of Mathematics and Physics 27 (1948), 274–278.
- Sloan, I. Polynomial interpolation and hyperinterpolation over general regions. Journal of Approximation Theory 83, 2 (1995), 238–254.
- Sloan, I. H. Polynomial approximation on spheres - generalizing de la Vallée-Poussin. Computational Methods in Applied Mathematics 11, 4 (2011), 540–552.
- Fourier Analysis: An Introduction. Princeton Lectures in Analysis. Princeton University Press, 2003.
- Alias-free digital synthesis of classic analog waveforms. In International Conference on Mathematics and Computing (1996).
- Use of the regularization method in non-linear problems. USSR Computational Mathematics and Mathematical Physics 5, 3 (1965), 93–107.
- Solutions of ill-posed problems. Winston & Sons, Washington, D.C., 1977.
- Chebfun Version 5.7.0. Chebfun Development Team, 2017.
- The exponentially convergent trapezoidal rule. SIAM Review 56, 3 (2014), 385–458.
- Non-convergence of the L-curve regularization parameter selection method. Inverse Problems 12, 4 (1996), 535–547.
- Extension of chebfun to periodic functions. SIAM Journal on Scientific Computing 37, 5 (2015), C554–C573.
- Zygmund, A. Trigonometric Series. Cambridge Mathematical Library. Cambridge University Press, 2002.