Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of Diabetic Retinopathy using Pre-Trained Deep Learning Models (2403.19905v1)

Published 29 Mar 2024 in cs.CV and cs.AI

Abstract: Diabetic Retinopathy (DR) stands as the leading cause of blindness globally, particularly affecting individuals between the ages of 20 and 70. This paper presents a Computer-Aided Diagnosis (CAD) system designed for the automatic classification of retinal images into five distinct classes: Normal, Mild, Moderate, Severe, and Proliferative Diabetic Retinopathy (PDR). The proposed system leverages Convolutional Neural Networks (CNNs) employing pre-trained deep learning models. Through the application of fine-tuning techniques, our model is trained on fundus images of diabetic retinopathy with resolutions of 350x350x3 and 224x224x3. Experimental results obtained on the Kaggle platform, utilizing resources comprising 4 CPUs, 17 GB RAM, and 1 GB Disk, demonstrate the efficacy of our approach. The achieved Area Under the Curve (AUC) values for CNN, MobileNet, VGG-16, InceptionV3, and InceptionResNetV2 models are 0.50, 0.70, 0.53, 0.63, and 0.69, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (8)
  1. S. Suriyal, C. Druzgalski, and K. Gautam, “Mobile assisted diabetic retinopathy detection using deep neural network,” 2018 Glob. Med. Eng. Phys. Exch. Am. Heal. Care Exch. GMEPE/PAHCE 2018, no. 562, pp. 1–4, 2018.
  2. A. Kwasigroch, B. Jarzembinski, and M. Grochowski, “Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy,” 2018 Int. Interdiscip. PhD Work. IIPhDW 2018, pp. 111–116, 2018.
  3. X. Wang, Y. Lu, Y. Wang, and W. B. Chen, “Diabetic retinopathy stage classification using convolutional neural networks,” Proc. - 2018 IEEE 19th Int. Conf. Inf. Reuse Integr. Data Sci. IRI 2018, pp. 465–471, 2018.
  4. S. Masood, T. Luthra, H. Sundriyal, and M. Ahmed, “Identification of diabetic retinopathy in eye images using transfer learning,” Proceeding - IEEE Int. Conf. Comput. Commun. Autom. ICCCA 2017, vol. 2017-Janua, no. ii, pp. 1183–1187, 2017.
  5. I. Ardiyanto, H. A. Nugroho, and R. L. B. Buana, “Deep learning-based Diabetic Retinopathy assessment on embedded system,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1760–1763, 2017.
  6. P. Goodman, A. Namdeo, F. Galatioto, M. C. Bell, E. Foster, and C. Shield, “Investigation of the emission and air quality impacts of low emission zone scenarios in Newcastle and Gateshead, UK,” HARMO 2014 - 16th Int. Conf. Harmon. within Atmos. Dispers. Model. Regul. Purp. Proc., 2014.
  7. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016.
  8. kevin mader, “InceptionV3,” 2017, 2018. [Online]. Available: https://www.kaggle.com/kmader/inceptionv3-for-retinopathy-gpu-hr.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Inas Al-Kamachy (1 paper)
  2. Reza Hassanpour (2 papers)
  3. Roya Choupani (1 paper)

Summary

We haven't generated a summary for this paper yet.