Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Sampling Distribution and Safety Filter for Autonomous Driving with VQ-VAE and Differentiable Optimization (2403.19461v2)

Published 28 Mar 2024 in cs.RO

Abstract: Sampling trajectories from a distribution followed by ranking them based on a specified cost function is a common approach in autonomous driving. Typically, the sampling distribution is hand-crafted (e.g a Gaussian, or a grid). Recently, there have been efforts towards learning the sampling distribution through generative models such as Conditional Variational Autoencoder (CVAE). However, these approaches fail to capture the multi-modality of the driving behaviour due to the Gaussian latent prior of the CVAE. Thus, in this paper, we re-imagine the distribution learning through vector quantized variational autoencoder (VQ-VAE), whose discrete latent-space is well equipped to capture multi-modal sampling distribution. The VQ-VAE is trained with demonstration data of optimal trajectories. We further propose a differentiable optimization based safety filter to minimally correct the VQVAE sampled trajectories to ensure collision avoidance. We use backpropagation through the optimization layers in a self-supervised learning set-up to learn good initialization and optimal parameters of the safety filter. We perform extensive comparisons with state-of-the-art CVAE-based baseline in dense and aggressive traffic scenarios and show a reduction of up to 12 times in collision-rate while being competitive in driving speeds.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory generation for dynamic street scenarios in a frenet frame,” in 2010 IEEE International Conference on Robotics and Automation.   IEEE, 2010, pp. 987–993.
  2. K. Moller, R. Trauth, G. Wuersching, and J. Betz, “Frenetix motion planner: High-performance and modular trajectory planning algorithm for complex autonomous driving scenarios,” arXiv preprint arXiv:2402.01443, 2024.
  3. A. K. Singh, J. Shrestha, and N. Albarella, “Bi-level optimization augmented with conditional variational autoencoder for autonomous driving in dense traffic,” in 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE).   IEEE, 2023, pp. 1–8.
  4. V. K. Adajania, A. Sharma, A. Gupta, H. Masnavi, K. M. Krishna, and A. K. Singh, “Multi-modal model predictive control through batch non-holonomic trajectory optimization: Application to highway driving,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4220–4227, 2022.
  5. J. Shrestha, S. Idoko, B. Sharma, and A. K. Singh, “End-to-end learning of behavioural inputs for autonomous driving in dense traffic,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 10 020–10 027.
  6. D. P. Kingma and M. Welling, “Auto-encoding variational {{\{{Bayes}}\}},” in Int. Conf. on Learning Representations.
  7. A. v. d. Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete representation learning,” arXiv preprint arXiv:1711.00937, 2017.
  8. A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves et al., “Conditional image generation with pixelcnn decoders,” Advances in neural information processing systems, vol. 29, 2016.
  9. J. Li, L. Sun, J. Chen, M. Tomizuka, and W. Zhan, “A safe hierarchical planning framework for complex driving scenarios based on reinforcement learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 2660–2666.
  10. C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochenderfer, “Combining planning and deep reinforcement learning in tactical decision making for autonomous driving,” IEEE transactions on intelligent vehicles, vol. 5, no. 2, pp. 294–305, 2019.
  11. L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. T. Chen, J. Ortiz, D. DeTone, A. S. Wang, S. Anderson et al., “Theseus: A library for differentiable nonlinear optimization,” in Advances in Neural Information Processing Systems.
  12. B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions for robot motion planning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 7087–7094.
  13. J. Sacks and B. Boots, “Learning sampling distributions for model predictive control,” in Conference on Robot Learning.   PMLR, 2023, pp. 1733–1742.
  14. G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path integral control: From theory to parallel computation,” Journal of Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.
  15. G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan, “Normalizing flows for probabilistic modeling and inference,” Journal of Machine Learning Research, vol. 22, no. 57, pp. 1–64, 2021.
  16. B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer in neural networks,” in International Conference on Machine Learning.   PMLR, 2017, pp. 136–145.
  17. L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig, “Safe learning in robotics: From learning-based control to safe reinforcement learning,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, pp. 411–444, 2022.
  18. W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini, X. Li, and D. Rus, “Barriernet: Differentiable control barrier functions for learning of safe robot control,” IEEE Transactions on Robotics, 2023.
  19. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018. [Online]. Available: http://github.com/google/jax
  20. E. Leurent, “An Environment for Autonomous Driving Decision-Making,” 5 2018. [Online]. Available: https://github.com/eleurent/highway-env
  21. F. Rastgar, H. Masnavi, K. Kruusamäe, A. Aabloo, and A. K. Singh, “Gpu accelerated batch trajectory optimization for autonomous navigation,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 718–725.
  22. V. K. Adajania, S. Zhou, A. K. Singh, and A. P. Schoellig, “Amswarm: An alternating minimization approach for safe motion planning of quadrotor swarms in cluttered environments,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 1421–1427.
  23. T. Goldstein and S. Osher, “The split bregman method for l1-regularized problems,” SIAM journal on imaging sciences, vol. 2, no. 2, pp. 323–343, 2009.
  24. H. Masnavi, J. Shrestha, M. Mishra, P. Sujit, K. Kruusamäe, and A. K. Singh, “Visibility-aware navigation with batch projection augmented cross-entropy method over a learned occlusion cost,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9366–9373, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.