Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A noise-tolerant, resource-saving probabilistic binary neural network implemented by the SOT-MRAM compute-in-memory system (2403.19374v1)

Published 28 Mar 2024 in cs.ET, cs.SY, and eess.SY

Abstract: We report a spin-orbit torque(SOT) magnetoresistive random-access memory(MRAM)-based probabilistic binary neural network(PBNN) for resource-saving and hardware noise-tolerant computing applications. With the presence of thermal fluctuation, the non-destructive SOT-driven magnetization switching characteristics lead to a random weight matrix with controllable probability distribution. In the meanwhile, the proposed CIM architecture allows for the concurrent execution of the probabilistic vector-matrix multiplication (PVMM) and binarization. Furthermore, leveraging the effectiveness of random binary cells to propagate multi-bit probabilistic information, our SOT-MRAM-based PBNN system achieves a 97.78\% classification accuracy under a 7.01\% weight variation on the MNIST database through 10 sampling cycles, and the number of bit-level computation operations is reduced by a factor of 6.9 compared to that of the full-precision LeNet-5 network. Our work provides a compelling framework for the design of reliable neural networks tailored to the applications with low power consumption and limited computational resources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus and the future of parallel computing,” pp. 7–17, 2011.
  2. Y. Fujiwara and T. Kawahara, “Bnn training algorithm with ternary gradients and bnn based on mram array,” in TENCON 2023 - 2023 IEEE Region 10 Conference (TENCON), 2023, pp. 311–316.
  3. J. W. T. Peters and M. Welling, “Probabilistic binary neural networks,” ArXiv, vol. abs/1809.03368, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:52180104
  4. F. Neugebauer, I. Polian, and J. P. Hayes, “Building a better random number generator for stochastic computing,” in 2017 Euromicro Conference on Digital System Design (DSD), 2017, pp. 1–8.
  5. P. Monteiro, L. Oliveira, and J. Casaleiro, “True random number generator implemented in 130 nm cmos nanotechnology,” in 2022 International Young Engineers Forum (YEF-ECE), 2022, pp. 52–56.
  6. T. Arciuolo and K. M. Elleithy, “Parallel, true random number generator (p-trng): Using parallelism for fast true random number generation in hardware,” in 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), 2021, pp. 0987–0992.
  7. B. Perach and S. Kvatinsky, “An asynchronous and low-power true random number generator using stt-mtj,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020, pp. 1–1.
  8. Z. Hou, M. Wang, J. Yin, K. Shi, B. Wang, Y. Zhao, and Z. Wang, “High-speed and reconfigurable physical unclonable functions based on sot-mtj array,” in 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC), 2023, pp. 141–144.
  9. X. Jin, W. Chen, X. Li, N. Yin, C. Wan, M. Zhao, X. Han, and Z. Yu, “High-reliability, reconfigurable, and fully non-volatile full-adder based on sot-mtj for image processing applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 2, pp. 781–785, 2023.
  10. M. Kayed, A. Anter, and H. Mohamed, “Classification of garments from fashion mnist dataset using cnn lenet-5 architecture,” in 2020 International Conference on Innovative Trends in Communication and Computer Engineering (ITCE), 2020, pp. 238–243.
  11. D. Zhao, Y. Zeng, T. Zhang, M. Shi, and F. Zhao, “Glsnn: A multi-layer spiking neural network based on global feedback alignment and local stdp plasticity,” Frontiers in Computational Neuroscience, vol. 14, 2020. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fncom.2020.576841
  12. X. Sun, P. Wang, K. Ni, S. Datta, and S. Yu, “Exploiting hybrid precision for training and inference: A 2t-1fefet based analog synaptic weight cell,” in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 3.1.1–3.1.4.
  13. S.-T. Lee, H. Kim, J.-H. Bae, H. Yoo, N. Y. Choi, D. Kwon, S. Lim, B.-G. Park, and J.-H. Lee, “High-density and highly-reliable binary neural networks using nand flash memory cells as synaptic devices,” in 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 38.4.1–38.4.4.
  14. Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Åkerman, K. Roy, J.-P. Wang, S.-H. Yang, K. Garello, and W. Zhang, “Roadmap of spin–orbit torques,” IEEE Transactions on Magnetics, vol. 57, no. 7, pp. 1–39, 2021.

Summary

We haven't generated a summary for this paper yet.