Rapid nonlinear convex guidance using a monomial method (2403.19324v3)
Abstract: This paper addresses the challenge of accommodating nonlinear dynamics and constraints in rapid trajectory optimization, envisioned for use in the context of onboard guidance. We present a novel framework that uniquely employs overparameterized monomial coordinates and pre-computed fundamental solution expansions to facilitate rapid optimization while minimizing real-time computational requirements. The fundamental solution expansions are pre-computed using differential algebra. Unlike traditional approaches that repeatedly evaluate the nonlinear dynamics and constraints as part of complex shooting or collocation-based schemes, this method replaces the nonlinearity inherent to dynamics and constraint functions entirely with a computationally simpler manifold constraint. With this approach, trajectory optimization is posed efficiently as a path planning problem on the manifold. This problem is entirely convex except for the manifold constraint, readily lending itself to solution via sequential convex programming. We demonstrate the effectiveness of our approach in computing fast and accurate delta-V optimal solutions for long-range spacecraft rendezvous, including problems with nonlinear state constraints.
- A rewriting system for convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018. doi:10.1080/23307706.2017.1397554.
- Chance-constrained, drift-safe guidance for spacecraft rendezvous. In AAS Rocky Mountain Guidance, Navigation, and Control Conference. American Astronautical Society, 2023. doi:10.48550/arXiv.2401.11077.
- M. Berz. Chapter 2 - Differential Algebraic Techniques. In Modern Map Methods in Particle Beam Physics, volume 108 of Advances in Imaging and Electron Physics, pages 81–117. Academic Press, San Diego, CA, 1999. doi:10.1016/S1076-5670(08)70228-3.
- S. Boone and J. McMahon. Orbital Guidance Using Higher-Order State Transition Tensors. Journal of Guidance, Control, and Dynamics, 44(3):493–504, 2021. doi:10.2514/1.G005493.
- S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, 2004.
- E. R. Burnett and H. Schaub. Spacecraft relative motion dynamics and control using fundamental modal solution constants. Journal of Guidance, Control, and Dynamics, 45(10):1786–1799, 2022. doi:10.2514/1.G006603.
- Linearized Relative Orbital Motion Model About an Oblate Body Without Averaging. Advances in the Astronautical Sciences, 167(AAS 18-218):691–710, 2018.
- Third order cartesian relative motion perturbation solutions for slightly eccentric chief orbits. Advances in the Astronautical Sciences, 158(AAS 16-496):3435–3454, 2016. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85007356529&partnerID=40&md5=d2756042f95ce0dc7988721b36b77d3c.
- Comparison of Relative Orbital Motion Perturbation Solutions in Cartesian and Spherical Coordinates. Advances in the Astronautical Sciences, (AAS 17-202), 2017.
- S. Casotto. The Equations of Relative Motion in the Orbital Reference Frame. Celestial Mechanics and Dynamical Astronomy, 124(3):215–234, 2016. doi:10.1007/s10569-015-9660-1.
- Terminal Guidance System for Satellite Rendezvous. Journal of the Aerospace Sciences, 27(9):653–658, Sept. 1960. doi:10.2514/8.8704.
- The ERC-Funded EXTREMA Project: Achieving Self-Driving Interplanetary CubeSats, pages 167–199. Springer International Publishing, Cham, 2023. ISBN 978-3-031-24812-2. doi:10.1007/978-3-031-24812-2_6.
- High order optimal feedback control of space trajectories with bounded control. Acta Astronautica, 94(1):383–394, 2014. doi:10.1016/j.actaastro.2013.02.011.
- S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016. doi:10.48550/arXiv.1603.00943.
- ECOS: An SOCP solver for embedded systems. In 2013 European Control Conference (ECC), pages 3071–3076. European Control Association, July 2013. doi:10.23919/ECC.2013.6669541.
- A. Giorgilli and M. Sansottera. Methods of algebraic manipulation in perturbation theory. Workshop Series of the Asociacion Argentina de Astronomia, 3:147–183, January 2011. doi:10.48550/arXiv.1303.7398.
- Direct multiple shooting transcription with polynomial algebra for optimal control problems under uncertainty. Acta Astronautica, 170:224–234, 2020. doi:10.1016/j.actaastro.2019.12.010.
- T. Guffanti and S. D’Amico. Integration constants as state variables for optimal path planning. In 2018 European Control Conference (ECC), pages 1–6. European Control Association, June 2018. doi:10.23919/ECC.2018.8550448.
- E. J. Hinch. Perturbation Methods. Cambridge University Press, Cambridge, England, 1991. doi:10.1017/CBO9781139172189.
- C. Hofmann and F. Topputo. Rapid Low-Thrust Trajectory Optimization in Deep Space Based on Convex Programming. Journal of Guidance, Control, and Dynamics, 44(7):1379–1388, 2021. doi:10.2514/1.G005839.
- On the Performance of Discretization and Trust-Region Methods for On-Board Convex Low-Thrust Trajectory Optimization. In AIAA SCITECH 2022 Forum, number 1892. AIAA, American Institute of Aeronautics and Astronautics, January 2022. doi:10.2514/6.2022-1892.
- Performance assessment of convex low-thrust trajectory optimization methods. Journal of Spacecraft and Rockets, 60(1):299–314, 2023. doi:10.2514/1.A35461.
- darioizzo/audi: Update to the new obake API and tbb API (v1.9.2). Zenodo, June 2022.
- À. Jorba. A Methodology for the Numerical Computation of Normal Forms, Centre Manifolds and First Integrals of Hamiltonian Systems. Experimental Mathematics, 8(2):155–195, 1999. doi:10.1080/10586458.1999.10504397.
- J. L. Junkins. Adventures on the Interface of Dynamics and Control. AIAA Journal of Guidance, Control, and Dynamics, 20(6):1058–1071, Nov.–Dec. 1997. doi:10.2514/2.4176.
- M. Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM Review, 59(4):849–904, 2017. doi:10.1137/16M1062569.
- P. Lu. Introducing Computational Guidance and Control. Journal of Guidance, Control, and Dynamics, 40(2):193–193, 2017. doi:10.2514/1.G002745.
- Successive Convexification of Non-Convex Optimal Control Problems with State Constraints. IFAC-PapersOnLine, 50(1):4063–4069, 2017. ISSN 2405-8963. doi:10.1016/j.ifacol.2017.08.789. 20th IFAC World Congress.
- Robust Low-Thrust Trajectory Optimization Using Convex Programming and a Homotopic Approach. IEEE Transactions on Aerospace and Electronic Systems, 58(3):2103–2116, 2022. doi:10.1109/TAES.2021.3128869.
- A. H. Nayfeh. Perturbation Methods. Wiley, Weinheim, 2000. doi:10.1002/9783527617609.
- K. Oguri. Successive Convexification with Feasibility Guarantee via Augmented Lagrangian for Non-Convex Optimal Control Problems. In 2023 62nd IEEE Conference on Decision and Control (CDC), pages 3296–3302, December 2023. doi:10.1109/CDC49753.2023.10383462.
- K. Oguri and J. W. McMahon. Robust Spacecraft Guidance Around Small Bodies Under Uncertainty: Stochastic Optimal Control Approach. Journal of Guidance, Control, and Dynamics, 44(7):1295–1313, 2021. doi:10.2514/1.G005426.
- Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design. Journal of Guidance, Control, and Dynamics, 29(6):1367–1375, 2006. doi:10.2514/1.20177.
- Embedded Code Generation With CVXPY. IEEE Control Systems Letters, 6:2653–2658, 2022. doi:10.1109/LCSYS.2022.3173209.
- H. Schaub and J. L. Junkins. Analytical Mechanics of Space Systems. AIAA Education Series, Reston, VA, 4th edition, 2018. doi:10.2514/4.105210.
- Spacecraft Autonomy Challenges for Next-Generation Space Missions, pages 1–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN 978-3-662-47694-9. doi:10.1007/978-3-662-47694-9_1.
- Nonlinear Mapping of Uncertainties in Celestial Mechanics. Journal of Guidance, Control, and Dynamics, 36(1):48–63, 2013. doi:10.2514/1.58068.
- Z. Wang and M. J. Grant. Minimum-fuel low-thrust transfers for spacecraft: A convex approach. IEEE Transactions on Aerospace and Electronic Systems, 54(5):2274–2290, 2018. doi:10.1109/TAES.2018.2812558.
- Second-order solution for relative motion on eccentric orbits in curvilinear coordinates. In AAS/AIAA Astrodynamics Specialist Conference, number AAS 19-810. American Astronautical Society, 2019a.
- Second-Order Analytical Solution for Relative Motion on Arbitrarily Eccentric Orbits. In AAS/AIAA Spaceflight Mechanics Meeting, number 19-364 in Advances in the Astronautical Sciences. Univelt, January 2019b.
- Wolfram Research, Inc. Mathematica, Version 13.3, 2023. URL https://www.wolfram.com/mathematica. Champaign, IL, 2024.