Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster formation due to repulsive spanning trees in attractively coupled networks (2403.19240v1)

Published 28 Mar 2024 in nlin.AO

Abstract: Ensembles of coupled nonlinear oscillators are a popular paradigm and an ideal benchmark for analyzing complex collective behaviors. The onset of cluster synchronization is found to be at the core of various technological and biological processes. The current literature has investigated cluster synchronization by focusing mostly on the case of attractive coupling among the oscillators. However, the case of two coexisting competing interactions is of practical interest due to their relevance in diverse natural settings, including neuronal networks consisting of excitatory and inhibitory neurons, the coevolving social model with voters of opposite opinions, ecological plant communities with both facilitation and competition, to name a few. In the present article, we investigate the impact of repulsive spanning trees on cluster formation within a connected network of attractively coupled limit cycle oscillators. We successfully predict which nodes belong to each cluster and the emergent frustration of the connected networks independent of the particular local dynamics at the network nodes. We also determine local asymptotic stability of the cluster states using an approach based on the formulation of a master stability function. We additionally validate the emergence of solitary states and antisynchronization for some specific choices of spanning trees and networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. S. Strogatz, Sync: The emerging science of spontaneous order (Penguin UK, 2004).
  2. A. E. Hramov and A. A. Koronovskii, Chaos: An Interdisciplinary Journal of Nonlinear Science 14, 603 (2004).
  3. F. Sorrentino and E. Ott, Physical Review E 76, 056114 (2007).
  4. N. Frolov and A. Hramov, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 063103 (2021).
  5. F. Sorrentino, New Journal of Physics 14, 033035 (2012).
  6. M. S. Anwar and D. Ghosh, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 033125 (2022).
  7. S. Nag Chowdhury and D. Ghosh, EPL (Europhysics Letters) 125, 10011 (2019).
  8. E. Teichmann and M. Rosenblum, Chaos: An Interdisciplinary Journal of Nonlinear Science 29, 093124 (2019).
  9. Y. Zhang and J. Sun, Physics Letters A 330, 442 (2004).
  10. S. H. Strogatz and R. E. Mirollo, Physical Review E 47, 220 (1993).
  11. W. Zou and M. Zhan, SIAM Journal on Applied Dynamical Systems 8, 1324 (2009).
  12. T. P. Vogels and L. Abbott, Nature Neuroscience 12, 483 (2009).
  13. H. Hong and S. H. Strogatz, Physical Review E 84, 046202 (2011a).
  14. H. Hong and S. H. Strogatz, Physical Review Letters 106, 054102 (2011b).
  15. D. Li and C. Zhou, Frontiers in Systems Neuroscience 5, 100 (2011).
  16. Z. Levnajić, Physical Review E 84, 016231 (2011).
  17. R. L. Graham and P. Hell, Annals of the History of Computing 7, 43 (1985).
  18. N. Deo, Graph theory with applications to engineering and computer science (Courier Dover Publications, 2017).
  19. M. Aigner and G. Ziegler, Berlin-Heidelberg-New York  (1998).
  20. L. M. Pecora and T. L. Carroll, Physical Review Letters 80, 2109 (1998).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com