Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical approximations of a lattice Boltzmann scheme with a family of partial differential equations (2403.19231v3)

Published 28 Mar 2024 in math.NA and cs.NA

Abstract: In this contribution, we address the numerical solutions of high-order asymptotic equivalent partial differential equations with the results of a lattice Boltzmann scheme for an inhomogeneous advection problem in one spatial dimension. We first derive a family of equivalent partial differential equations at various orders, and we compare the lattice Boltzmann experimental results with a spectral approximation of the differential equations. For an unsteady situation, we show that the initialization scheme at a sufficiently high order of the microscopic moments plays a crucial role to observe an asymptotic error consistent with the order of approximation. For a stationary long-time limit, we observe that the measured asymptotic error converges with a reduced order of precision compared to the one suggested by asymptotic analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. A. Augier, F. Dubois, L. Gouarin, B. Graille, “Linear lattice Boltzmann schemes for Acoustic: parameter choices and isotropy properties”, Computers and Mathematics with Applications, volume 65, pages 845-863, 2013.
  2. A. Augier, F. Dubois, B. Graille, P. Lallemand, “On rotational invariance of lattice Boltzmann schemes”, Computers and Mathematics with Applications, volume 67, pages 239-255, 2014.
  3. T. Bellotti, B. Graille, M. Massot, “Finite difference formulation of any lattice Boltzmann scheme”, Numerische Mathematik, volume 152, pages 1-40, 2022.
  4. J. E. Broadwell, “Shock structure in a simple discrete velocity gas”, Physics of Fluids, volume 7, pages 1243-1247, 1964.
  5. S. Chen, G. D. Doolen, “Lattice Boltzmann Method for Fluid Flows”, Annual Review of Fluid Mechanics, vol. 30, p. 329-364, 1998.
  6. F. Dubois, “Equivalent partial differential equations of a lattice Boltzmann scheme”, Computers and Mathematics with Applications, vol. 55, p. 1441-1449, 2008.
  7. F. Dubois, “Third order equivalent equation of lattice Boltzmann scheme”, Discrete and Continuous Dynamical Systems, A, vol. 23, p. 221-248, 2009.
  8. F. Dubois, “Nonlinear fourth-order Taylor expansion of lattice Boltzmann schemes”, Asymptotic Analysis, volune 127, pages 297-337, 2022.
  9. F. Dubois, B.M. Boghosian, P. Lallemand, “General fourth-order Chapman–Enskog expansion of lattice Boltzmann schemes”, Computers and Fluids, volume 266, article 106036, 11 pages, 2023.
  10. F. Dubois, P. Lallemand, “Towards higher order lattice Boltzmann schemes”, Journal of Statistical Mechanics, Theory and Experiment, P06006, 2009.
  11. F. Dubois, P. Lallemand, “Quartic Parameters for Acoustic Applications of Lattice Boltzmann Scheme”, Computers and Mathematics with Applications, volume 61, p. 3404-3416, 2011.
  12. F. Dubois, P. Lallemand, “On Single Distribution Lattice Boltzmann Schemes for the Approximation of Navier Stokes Equations”, Communications in Computational Physics, volume 34, pages 613-671, 2023.
  13. R. Gatignol, “The hydrodynamical description for a discrete velocity model of gas”, Complex systems, volume 1, pages 709-725, 1987.
  14. M. Hénon, “Viscosity of a lattice gas”, Complex systems, volume 1, pages 763-789, 1987.
  15. D. d’Humières, “Generalized lattice-Boltzmann equations”, in Rarefied Gas Dynamics: Theory and Simulations, volume 159 of AIAA Progress in Astronautics and Aeronautics, pages 450-458, 1992.
  16. D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, volume 15, pages 437-451, 2002.
  17. D. d’Humières, I. Ginzburg, “Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to “magic” collision numbers”, Computers And Mathematics with Applications, volume 58, pages 823-840, 2009.
  18. P. Lallemand, L.-S. Luo, “Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability”, Physical Review E, volume  61, p. 6546-6562, 2000.
  19. R. Mei, L.-S. Luo, P. Lallemand, D. d’Humières, “Consistent initial conditions for lattice Boltzmann simulations”, Computers and Fluids, volume 35, pages 855-862, 2006.
  20. H. Otomo, B. M. Boghosian, F. Dubois, “Two complementary lattice-Boltzmann-based analyses for nonlinear systems”, Physica A, volume 486, pages 1000-1011, 2017.
  21. Y. H. Qian, Y. Zhou, “On higher order dynamics in lattice-based models using Chapman-Enskog method”, Physical Review E, vol. 61, p. 2103-2106, 2000.
Citations (2)

Summary

We haven't generated a summary for this paper yet.