Sounds waves and fluctuations in one-dimensional supersolids (2403.19151v1)
Abstract: We examine the low-energy excitations of a dilute supersolid state of matter with a one-dimensional crystal structure. A hydrodynamic description is developed based on a Lagrangian, incorporating generalized elastic parameters derived from ground state calculations. The predictions of the hydrodynamic theory are validated against solutions of the Bogoliubov-de Gennes equations, by comparing the speeds of sound, density fluctuations, and phase fluctuations of the two gapless bands. Our results are presented for two distinct supersolid models: a dipolar Bose-Einstein condensate in an infinite tube and a dilute Bose gas of atoms with soft-core interactions. Characteristic energy scales are identified, highlighting that these two models approximately realize the bulk incompressible and rigid lattice supersolid limits.
- H. Watanabe and T. Brauner, Spontaneous breaking of continuous translational invariance, Phys. Rev. D 85, 085010 (2012).
- F. Ancilotto, M. Rossi, and F. Toigo, Supersolid structure and excitation spectrum of soft-core bosons in three dimensions, Phys. Rev. A 88, 033618 (2013).
- S. M. Roccuzzo and F. Ancilotto, Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube, Phys. Rev. A 99, 041601(R) (2019).
- T. Ilg and H. P. Büchler, Ground-state stability and excitation spectrum of a one-dimensional dipolar supersolid, Phys. Rev. A 107, 013314 (2023).
- A. F. Andreev and I. M. Lifshitz, Quantum theory of defects in crystals, Sov. Phys. JETP 29, 1107 (1969).
- W. M. Saslow, Microscopic and hydrodynamic theory of superfluidity in periodic solids, Phys. Rev. B 15, 173 (1977).
- M. Liu, Two possible types of superfluidity in crystals, Phys. Rev. B 18, 1165 (1978).
- D. T. Son, Effective lagrangian and topological interactions in supersolids, Phys. Rev. Lett. 94, 175301 (2005).
- J. Hofmann and W. Zwerger, Hydrodynamics of a superfluid smectic, J. Stat. Mech.: Theory Exp. 2021 (3), 033104.
- C. Bühler, T. Ilg, and H. P. Büchler, Quantum fluctuations in one-dimensional supersolids, Phys. Rev. Res. 5, 033092 (2023).
- C. Josserand, Y. Pomeau, and S. Rica, Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid, Phys. Rev. Lett. 98, 195301 (2007a).
- C. Josserand, Y. Pomeau, and S. Rica, Patterns and supersolids, Eur. Phys. J.: Spec. 146, 47 (2007b).
- J. Ye, Elementary excitation in a supersolid, EPL 82, 16001 (2008).
- A. S. Peletminskii, Classical and relativistic dynamics of supersolids: variational principle, J. Phys. A 42, 045501 (2008).
- N. Sepúlveda, C. Josserand, and S. Rica, Nonclassical rotational inertia fraction in a one-dimensional model of a supersolid, Phys. Rev. B 77, 054513 (2008).
- M. Kunimi, Y. Nagai, and Y. Kato, Josephson effects in one-dimensional supersolids, Phys. Rev. B 84, 094521 (2011).
- S. Prestipino, A. Sergi, and E. Bruno, Clusterization of weakly-interacting bosons in one dimension: an analytic study at zero temperature, J. Phys. A 52, 015002 (2018).
- N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett. 104, 195302 (2010).
- A. J. Leggett, Can a solid be "superfluid"?, Phys. Rev. Lett. 25, 1543 (1970).
- A. Leggett, On the superfluid fraction of an arbitrary many-body system at T=0𝑇0T=0italic_T = 0, J. Stat. Phys. 93, 927 (1998).
- J. C. Smith, D. Baillie, and P. B. Blakie, Supersolidity and crystallization of a dipolar Bose gas in an infinite tube, Phys. Rev. A 107, 033301 (2023).
- P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).
- M. Kunimi and Y. Kato, Mean-field and stability analyses of two-dimensional flowing soft-core bosons modeling a supersolid, Phys. Rev. B 86, 060510(R) (2012).
- L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity, Vol. 164 (Oxford University Press, 2016).
- C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004).
- K. Mukherjee and S. M. Reimann, Classical-linear-chain behavior from dipolar droplets to supersolids, Phys. Rev. A 107, 043319 (2023).
- Y.-C. Zhang, F. Maucher, and T. Pohl, Supersolidity around a critical point in dipolar Bose-Einstein condensates, Phys. Rev. Lett. 123, 015301 (2019).
- B. T. E. Ripley, D. Baillie, and P. B. Blakie, Two-dimensional supersolidity in a planar dipolar Bose gas, Phys. Rev. A 108, 053321 (2023).
- M. Rakic, A. F. Ho, and D. K. K. Lee, Elastic properties and thermodynamic anomalies of supersolids, arXiv:2403.13727 .
- A. R. P. Lima and A. Pelster, Quantum fluctuations in dipolar Bose gases, Phys. Rev. A 84, 041604(R) (2011).
- W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput. 25, 1674 (2004).
- A.-C. Lee, D. Baillie, and P. B. Blakie, Numerical calculation of dipolar-quantum-droplet stationary states, Phys. Rev. Res. 3, 013283 (2021).
- A. Zippelius, B. I. Halperin, and D. R. Nelson, Dynamics of two-dimensional melting, Phys. Rev. B 22, 2514 (1980).