Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sounds waves and fluctuations in one-dimensional supersolids (2403.19151v1)

Published 28 Mar 2024 in cond-mat.quant-gas

Abstract: We examine the low-energy excitations of a dilute supersolid state of matter with a one-dimensional crystal structure. A hydrodynamic description is developed based on a Lagrangian, incorporating generalized elastic parameters derived from ground state calculations. The predictions of the hydrodynamic theory are validated against solutions of the Bogoliubov-de Gennes equations, by comparing the speeds of sound, density fluctuations, and phase fluctuations of the two gapless bands. Our results are presented for two distinct supersolid models: a dipolar Bose-Einstein condensate in an infinite tube and a dilute Bose gas of atoms with soft-core interactions. Characteristic energy scales are identified, highlighting that these two models approximately realize the bulk incompressible and rigid lattice supersolid limits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. H. Watanabe and T. Brauner, Spontaneous breaking of continuous translational invariance, Phys. Rev. D 85, 085010 (2012).
  2. F. Ancilotto, M. Rossi, and F. Toigo, Supersolid structure and excitation spectrum of soft-core bosons in three dimensions, Phys. Rev. A 88, 033618 (2013).
  3. S. M. Roccuzzo and F. Ancilotto, Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube, Phys. Rev. A 99, 041601(R) (2019).
  4. T. Ilg and H. P. Büchler, Ground-state stability and excitation spectrum of a one-dimensional dipolar supersolid, Phys. Rev. A 107, 013314 (2023).
  5. A. F. Andreev and I. M. Lifshitz, Quantum theory of defects in crystals, Sov. Phys. JETP 29, 1107 (1969).
  6. W. M. Saslow, Microscopic and hydrodynamic theory of superfluidity in periodic solids, Phys. Rev. B 15, 173 (1977).
  7. M. Liu, Two possible types of superfluidity in crystals, Phys. Rev. B 18, 1165 (1978).
  8. D. T. Son, Effective lagrangian and topological interactions in supersolids, Phys. Rev. Lett. 94, 175301 (2005).
  9. J. Hofmann and W. Zwerger, Hydrodynamics of a superfluid smectic, J. Stat. Mech.: Theory Exp. 2021 (3), 033104.
  10. C. Bühler, T. Ilg, and H. P. Büchler, Quantum fluctuations in one-dimensional supersolids, Phys. Rev. Res. 5, 033092 (2023).
  11. C. Josserand, Y. Pomeau, and S. Rica, Coexistence of ordinary elasticity and superfluidity in a model of a defect-free supersolid, Phys. Rev. Lett. 98, 195301 (2007a).
  12. C. Josserand, Y. Pomeau, and S. Rica, Patterns and supersolids, Eur. Phys. J.: Spec. 146, 47 (2007b).
  13. J. Ye, Elementary excitation in a supersolid, EPL 82, 16001 (2008).
  14. A. S. Peletminskii, Classical and relativistic dynamics of supersolids: variational principle, J. Phys. A 42, 045501 (2008).
  15. N. Sepúlveda, C. Josserand, and S. Rica, Nonclassical rotational inertia fraction in a one-dimensional model of a supersolid, Phys. Rev. B 77, 054513 (2008).
  16. M. Kunimi, Y. Nagai, and Y. Kato, Josephson effects in one-dimensional supersolids, Phys. Rev. B 84, 094521 (2011).
  17. S. Prestipino, A. Sergi, and E. Bruno, Clusterization of weakly-interacting bosons in one dimension: an analytic study at zero temperature, J. Phys. A 52, 015002 (2018).
  18. N. Henkel, R. Nath, and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett. 104, 195302 (2010).
  19. A. J. Leggett, Can a solid be "superfluid"?, Phys. Rev. Lett. 25, 1543 (1970).
  20. A. Leggett, On the superfluid fraction of an arbitrary many-body system at T=0𝑇0T=0italic_T = 0, J. Stat. Phys. 93, 927 (1998).
  21. J. C. Smith, D. Baillie, and P. B. Blakie, Supersolidity and crystallization of a dipolar Bose gas in an infinite tube, Phys. Rev. A 107, 033301 (2023).
  22. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).
  23. M. Kunimi and Y. Kato, Mean-field and stability analyses of two-dimensional flowing soft-core bosons modeling a supersolid, Phys. Rev. B 86, 060510(R) (2012).
  24. L. Pitaevskii and S. Stringari, Bose-Einstein Condensation and Superfluidity, Vol. 164 (Oxford University Press, 2016).
  25. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004).
  26. K. Mukherjee and S. M. Reimann, Classical-linear-chain behavior from dipolar droplets to supersolids, Phys. Rev. A 107, 043319 (2023).
  27. Y.-C. Zhang, F. Maucher, and T. Pohl, Supersolidity around a critical point in dipolar Bose-Einstein condensates, Phys. Rev. Lett. 123, 015301 (2019).
  28. B. T. E. Ripley, D. Baillie, and P. B. Blakie, Two-dimensional supersolidity in a planar dipolar Bose gas, Phys. Rev. A 108, 053321 (2023).
  29. M. Rakic, A. F. Ho, and D. K. K. Lee, Elastic properties and thermodynamic anomalies of supersolids,  arXiv:2403.13727 .
  30. A. R. P. Lima and A. Pelster, Quantum fluctuations in dipolar Bose gases, Phys. Rev. A 84, 041604(R) (2011).
  31. W. Bao and Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput. 25, 1674 (2004).
  32. A.-C. Lee, D. Baillie, and P. B. Blakie, Numerical calculation of dipolar-quantum-droplet stationary states, Phys. Rev. Res. 3, 013283 (2021).
  33. A. Zippelius, B. I. Halperin, and D. R. Nelson, Dynamics of two-dimensional melting, Phys. Rev. B 22, 2514 (1980).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com