Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Human-Centered Construction Robotics: A Reinforcement Learning-Driven Companion Robot for Contextually Assisting Carpentry Workers (2403.19060v3)

Published 27 Mar 2024 in cs.RO, cs.AI, cs.HC, and cs.LG

Abstract: In the dynamic construction industry, traditional robotic integration has primarily focused on automating specific tasks, often overlooking the complexity and variability of human aspects in construction workflows. This paper introduces a human-centered approach with a "work companion rover" designed to assist construction workers within their existing practices, aiming to enhance safety and workflow fluency while respecting construction labor's skilled nature. We conduct an in-depth study on deploying a robotic system in carpentry formwork, showcasing a prototype that emphasizes mobility, safety, and comfortable worker-robot collaboration in dynamic environments through a contextual Reinforcement Learning (RL)-driven modular framework. Our research advances robotic applications in construction, advocating for collaborative models where adaptive robots support rather than replace humans, underscoring the potential for an interactive and collaborative human-robot workforce.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. M. E. Shehata and K. M. El-Gohary, “Towards improving construction labor productivity and projects’ performance,” Alexandria Engineering Journal, vol. 50, no. 4, pp. 321–330, Dec. 2011.
  2. R. K. Fagbenro, R. Y. Sunindijo, C. Illankoon, and S. Frimpong, “Influence of Prefabricated Construction on the Mental Health of Workers: Systematic Review,” European Journal of Investigation in Health, Psychology and Education, vol. 13, no. 2, pp. 345–363, Feb. 2023.
  3. P. Wu, J. Wang, and X. Wang, “A critical review of the use of 3-D printing in the construction industry,” Automation in Construction, vol. 68, pp. 21–31, Aug. 2016.
  4. M. Gharbia, A. Chang-Richards, Y. Lu, R. Y. Zhong, and H. Li, “Robotic technologies for on-site building construction: A systematic review,” Journal of Building Engineering, vol. 32, p. 101584, Nov. 2020.
  5. T. Liu, H. Zhou, Y. Du, J. Zhang, J. Zhao, and Y. Li, “A Brief Review on Robotic Floor-Tiling,” in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society.   Washington, DC: IEEE, Oct. 2018, pp. 5583–5588.
  6. E. Asadi, B. Li, and I.-M. Chen, “Pictobot: A Cooperative Painting Robot for Interior Finishing of Industrial Developments,” IEEE Robotics & Automation Magazine, vol. 25, no. 2, pp. 82–94, June 2018.
  7. Z. Fang, Y. Wu, A. Hassonjee, A. Bidgoli, and D. Cardoso Llach, “Towards an Architectural Framework for Distributed, Robotically Assisted Construction: Using Reinforcement Learning to Support Scalable Multi-Drone Construction in Dynamic Environments.” in Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA), vol. I: Technical Papers.   Online and Global: CUMINCAD, Oct. 2020, pp. 320–329.
  8. T. Bock, “The future of construction automation: Technological disruption and the upcoming ubiquity of robotics,” Automation in Construction, vol. 59, pp. 113–121, Nov. 2015.
  9. L. Mingyue Ma, T. Fong, M. J. Micire, Y. K. Kim, and K. Feigh, “Human-Robot Teaming: Concepts and Components for Design,” in Field and Service Robotics, M. Hutter and R. Siegwart, Eds.   Cham: Springer International Publishing, 2018, pp. 649–663.
  10. L. V. Calderita, L. J. Manso, P. Bustos, C. Suárez-Mejías, F. Fernández, and A. Bandera, “THERAPIST: Towards an autonomous socially interactive robot for motor and neurorehabilitation therapies for children,” JMIR rehabilitation and assistive technologies, vol. 1, no. 1, p. e1, Oct. 2014.
  11. J. Fasola and M. J. Matarić, “A socially assistive robot exercise coach for the elderly,” Journal of Human-Robot Interaction, vol. 2, no. 2, pp. 3–32, June 2013.
  12. T. Iio, S. Satake, T. Kanda, K. Hayashi, F. Ferreri, and N. Hagita, “Human-Like Guide Robot that Proactively Explains Exhibits,” International Journal of Social Robotics, vol. 12, no. 2, pp. 549–566, May 2020.
  13. G.-J. M. Kruijff, M. Janíček, S. Keshavdas, B. Larochelle, H. Zender, N. J. Smets, T. Mioch, M. A. Neerincx, J. V. Diggelen, F. Colas, et al., “Experience in system design for human-robot teaming in urban search and rescue,” in Field and Service Robotics: Results of the 8th International Conference.   Springer, 2014, pp. 111–125.
  14. S. Hopko, J. Wang, and R. Mehta, “Human factors considerations and metrics in shared space human-robot collaboration: A systematic review,” Frontiers in Robotics and AI, vol. 9, p. 799522, 2022.
  15. A. Pandey, S. Pandey, and DR. Parhi, “Mobile robot navigation and obstacle avoidance techniques: A review,” Int Rob Auto J, vol. 2, no. 3, p. 00022, 2017.
  16. C. Mavrogiannis, F. Baldini, A. Wang, D. Zhao, P. Trautman, A. Steinfeld, and J. Oh, “Core Challenges of Social Robot Navigation: A Survey,” Mar. 2021.
  17. C. Chen, E. Demir, Y. Huang, and R. Qiu, “The adoption of self-driving delivery robots in last mile logistics,” Transportation Research Part E: Logistics and Transportation Review, vol. 146, p. 102214, Feb. 2021.
  18. J. Williamsson, “Business model design for campus-based autonomous deliveries – A Swedish case study,” Research in Transportation Business & Management, vol. 43, p. 100758, June 2022.
  19. EM. Wetzel, J. Liu, T. Leathem, and A. Sattineni, “The use of boston dynamics SPOT in support of LiDAR scanning on active construction sites,” in ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, vol. 39.   IAARC Publications, 2022, pp. 86–92.
  20. P. T. Singamaneni, P. Bachiller-Burgos, L. J. Manso, A. Garrell, A. Sanfeliu, A. Spalanzani, and R. Alami, “A survey on socially aware robot navigation: Taxonomy and future challenges,” The International Journal of Robotics Research, p. 02783649241230562, Feb. 2024.
  21. M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic, decision-making agents with deep reinforcement learning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, Sept. 2018.
  22. C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 6015–6022.
  23. S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell, “Decentralized Structural-RNN for Robot Crowd Navigation with Deep Reinforcement Learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   Xi’an, China: IEEE, May 2021, pp. 3517–3524.
  24. B. Stoler, M. Jana, S. Hwang, and J. Oh, “T2FPV: Dataset and method for correcting first-person view errors in pedestrian trajectory prediction,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 4037–4044.
  25. J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,” in Robotics: Science and Systems X.   Robotics: Science and Systems Foundation, July 2014.
  26. T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus, “LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2020, pp. 5135–5142.
  27. M. F. Everett, “Robot designed for socially acceptable navigation,” Ph.D. dissertation, Massachusetts Institute of Technology, 2017.
  28. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint arXiv:2207.02696, 2022.
  29. E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN,” ACM Transactions on Database Systems (TODS), vol. 42, no. 3, pp. 1–21, 2017.
  30. N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” in 2017 IEEE International Conference on Image Processing (ICIP).   IEEE, 2017, pp. 3645–3649.
  31. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  32. Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sept. 2017, pp. 1343–1350.
  33. J. van den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-Body Collision Avoidance,” in Robotics Research, ser. Springer Tracts in Advanced Robotics, C. Pradalier, R. Siegwart, and G. Hirzinger, Eds.   Berlin, Heidelberg: Springer, 2011, pp. 3–19.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yuning Wu (20 papers)
  2. Jiaying Wei (2 papers)
  3. Jean Oh (77 papers)
  4. Daniel Cardoso Llach (2 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets