Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete Poincaré and Trace Inequalities for the Hybridizable Discontinuous Galerkin Method (2403.19004v2)

Published 27 Mar 2024 in math.NA and cs.NA

Abstract: In this paper, we derive discrete Poincar\'e and trace inequalities for the hybridizable discontinuous Galerkin (HDG) method. We employ the Crouzeix-Raviart space as a bridge, connecting classical discrete functional tools from Brenner's foundational work \cite{brenner2003poincare} with hybridizable finite element spaces comprised of piecewise polynomial functions defined both within the element interiors and on the mesh skeleton. This approach yields custom-tailored inequalities that underpin the stability analysis of HDG discretizations. The resulting framework is then used to demonstrate the well-posedness and robustness of HDG-based numerical schemes for second-order elliptic problems, even under minimal regularity assumptions on the source term and boundary data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. R. Altmann and C. Carstensen. P1subscript𝑃1P_{1}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-nonconforming finite elements on triangulations into triangles and quadrilaterals. SIAM Journal on Numerical Analysis, 50(2):418–438, 2012.
  2. Crouzeix-Raviart type finite elements on anisotropic meshes. Numerische Mathematik, 89:193–223, 2001.
  3. D. N. Arnold. Mixed finite element methods for elliptic problems. Computer methods in applied mechanics and engineering, 82(1-3):281–300, 1990.
  4. D. N. Arnold and F. Brezzi. Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM: Mathematical Modelling and Numerical Analysis, 19(1):7–32, 1985.
  5. D. N. Arnold and R. Winther. Mixed finite elements for elasticity. Numerische Mathematik, 92:401–419, 2002.
  6. A hybrid high-order method for the incompressible Navier–Stokes equations based on temam’s device. Journal of Computational Physics, 376:786–816, 2019.
  7. S. Brenner and L.-Y. Sung. Piecewise H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT functions and vector fields associated with meshes generated by independent refinements. Mathematics of Computation, 84(293):1017–1036, 2015.
  8. S. C. Brenner. Poincaré–Friedrichs inequalities for piecewise H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT functions. SIAM Journal on Numerical Analysis, 41(1):306–324, 2003.
  9. S. C. Brenner. The mathematical theory of finite element methods. Springer, 2008.
  10. S. C. Brenner. Forty years of the Crouzeix-Raviart element. Numerical Methods for Partial Differential Equations, 31(2):367–396, 2015.
  11. A. Buffa and C. Ortner. Compact embeddings of broken Sobolev spaces and applications. IMA journal of numerical analysis, 29(4):827–855, 2009.
  12. Hybrid high-order methods for the acoustic wave equation in the time domain. Communications on Applied Mathematics and Computation, 4(2):597–633, 2022.
  13. A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo, 36, 12 2000.
  14. On the superconvergence of a hybridizable discontinuous Galerkin method for the Cahn–Hilliard equation. SIAM Journal on Numerical Analysis, 61(1):83–109, 2023.
  15. An HDG method for the time-dependent drift–diffusion model of semiconductor devices. Journal of Scientific Computing, 80(1):420–443, 2019.
  16. P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
  17. B. Cockburn. The hybridizable discontinuous Galerkin methods. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pages 2749–2775. World Scientific, 2010.
  18. BriDGing the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):635–650, 2016.
  19. A note on the devising of superconvergent HDG methods for Stokes flow by M-decompositions. IMA Journal of Numerical Analysis, 37(2):730–749, 2017.
  20. Discrete H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-inequalities for spaces admitting M-decompositions. SIAM Journal on Numerical Analysis, 56(6):3407–3429, 2018.
  21. B. Cockburn and J. Gopalakrishnan. A characterization of hybridized mixed methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 42(1):283–301, 2004.
  22. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis, 47(2):1319–1365, 2009.
  23. Analysis of HDG methods for Stokes flow. Mathematics of Computation, 80(274):723–760, 2011.
  24. A projection-based error analysis of HDG methods. Mathematics of Computation, 79(271):1351–1367, 2010.
  25. Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Mathematics of Computation, 78(265):1–24, 2009.
  26. Interpolatory HDG method for parabolic semilinear PDEs. Journal of Scientific Computing, 79:1777–1800, 2019.
  27. M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue française d’automatique informatique recherche opérationnelle. Mathématique, 7(R3):33–75, 1973.
  28. D. Di Pietro and J. Droniou. A hybrid high-order method for Leray–Lions elliptic equations on general meshes. Mathematics of Computation, 86(307):2159–2191, 2017.
  29. D. Di Pietro and A. Ern. Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Mathematics of Computation, 79(271):1303–1330, 2010.
  30. D. Di Pietro and S. Lemaire. An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Mathematics of Computation, 84(291):1–31, 2015.
  31. D. A. Di Pietro and J. Droniou. The hybrid high-order method for polytopal meshes. Number 19 in Modeling, Simulation and Application, 2020.
  32. D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69. Springer Science & Business Media, 2011.
  33. D. A. Di Pietro and A. Ern. A hybrid high-order locking-free method for linear elasticity on general meshes. Computer Methods in Applied Mechanics and Engineering, 283:1–21, 2015.
  34. D. A. Di Pietro and R. Tittarelli. An introduction to hybrid high-order methods. Numerical Methods for PDEs: State of the Art Techniques, pages 75–128, 2018.
  35. Z. Ding. A proof of the trace theorem of Sobolev spaces on Lipschitz domains. Proceedings of the American Mathematical Society, 124(2):591–600, 1996.
  36. Z. Dong and A. Ern. Hybrid high-order and weak Galerkin methods for the biharmonic problem. SIAM Journal on Numerical Analysis, 60(5):2626–2656, 2022.
  37. J. Droniou and L. Yemm. Robust hybrid high-order method on polytopal meshes with small faces. Computational Methods in Applied Mathematics, 22(1):47–71, 2022.
  38. S. Du and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. Mathematics of Computation, 89(324):1745–1782, 2020.
  39. Finite elements II. Springer, 2021.
  40. Best constants in Poincaré inequalities for convex domains. Journal of Convex Analysis, 20:253–264, 01 2013.
  41. L. C. Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.
  42. Finite volume methods. Handbook of numerical analysis, 7:713–1018, 2000.
  43. Analysis of an HDG method for linear elasticity. International Journal for Numerical Methods in Engineering, 102(3-4):551–575, 2015.
  44. Elliptic partial differential equations of second order, volume 224. Springer, 1977.
  45. P. Hansbo and M. G. Larson. Discontinuous Galerkin and the Crouzeix–Raviart element: application to elasticity. ESAIM: Mathematical Modelling and Numerical Analysis, 37(1):63–72, 2003.
  46. Stability and convergence of HDG schemes under minimal regularity. arXiv preprint arXiv:2310.18448, 2023.
  47. V. John et al. Finite element methods for incompressible flow problems, volume 51. Springer, 2016.
  48. F. Kikuchi. Rellich-type discrete compactness for some discontinuous Galerkin FEM. Japan journal of industrial and applied mathematics, 29(2):269–288, 2012.
  49. To CG or to HDG: a comparative study. Journal of Scientific Computing, 51:183–212, 2012.
  50. K. Kirk. Numerical analysis of space-time hybridized discontinuous Galerkin methods for incompressible flows. 2022.
  51. Convergence to weak solutions of a space-time hybridized discontinuous Galerkin method for the incompressible Navier–Stokes equations. Mathematics of Computation, 92(339):147–174, 2023.
  52. J. Nečas. Les méthodes directes en théorie des équations elliptiques. Academia, 1967.
  53. An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. Journal of Computational Physics, 228(9):3232–3254, 2009.
  54. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. Journal of Computational Physics, 228(23):8841–8855, 2009.
  55. A hybridizable discontinuous Galerkin method for Stokes flow. Computer Methods in Applied Mechanics and Engineering, 199(9-12):582–597, 2010.
  56. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. Journal of Computational Physics, 230(4):1147–1170, 2011.
  57. An optimal Poincaré inequality for convex domains. Archive for Rational Mechanics and Analysis, 5(1):286–292, 1960.
  58. J. Peraire and P.-O. Persson. The compact discontinuous Galerkin (cDG) method for elliptic problems. SIAM Journal on Scientific Computing, 30(4):1806–1824, 2008.
  59. An HDG method for linear elasticity with strong symmetric stresses. Mathematics of Computation, 87(309):69–93, 2018.
  60. B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. SIAM, 2008.
  61. R. Sevilla and A. Huerta. Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In Advanced finite element technologies, pages 105–129. Springer, 2016.
  62. J. Shen. Hybridizable discontinuous Galerkin method for nonlinear elasticity. 2017.
  63. A. Ten Eyck and A. Lew. Discontinuous Galerkin methods for non-linear elasticity. International Journal for Numerical Methods in Engineering, 67(9):1204–1243, 2006.
  64. M. Vohralík. On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H1superscript𝐻1H^{1}italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. Numerical functional analysis and optimization, 26(7-8):925–952, 2005.
  65. T. Warburton and J. S. Hesthaven. On the constants in hp-finite element trace inverse inequalities. Computer methods in applied mechanics and engineering, 192(25):2765–2773, 2003.
  66. J. Wloka. Partial differential equations. Cambridge University Press, 1987.
  67. The finite element method: its basis and fundamentals. Elsevier, 2005.

Summary

We haven't generated a summary for this paper yet.