Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal activation with maximal reach: Reachability clouds of bio-inspired slender manipulators (2403.18841v1)

Published 3 Mar 2024 in cs.RO

Abstract: In the field of soft robotics, flexibility, adaptability, and functionality define a new era of robotic systems that can safely deform, reach, and grasp. To optimize the design of soft robotic systems, it is critical to understand their configuration space and full range of motion across a wide variety of design parameters. Here we integrate extreme mechanics and soft robotics to provide quantitative insights into the design of bio-inspired soft slender manipulators using the concept of reachability clouds. For a minimal three-actuator design inspired by the elephant trunk, we establish an efficient and robust reduced-order method to generate reachability clouds of almost half a million points each to visualize the accessible workspace of a wide variety of manipulator designs. We generate an atlas of 256 reachability clouds by systematically varying the key design parameters including the fiber count, revolution, tapering angle, and activation magnitude. Our results demonstrate that reachability clouds not only offer an immediately clear perspective into the inverse problem of control, but also introduce powerful metrics to characterize reachable volumes, unreachable regions, and actuator redundancy to quantify the performance of soft slender robots. Our study provides new insights into the design of soft robotic systems with minimal activation and maximal reach with potential applications in medical robotics, flexible manufacturing, and the autonomous exploration of space.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. doi:10.1016/j.eml.2018.05.003.
  2. doi:10.1038/nature14543.
  3. doi:10.1002/adfm.201504755.
  4. doi:10.1016/j.tibtech.2013.03.002.
  5. doi:10.1016/j.eml.2021.101268.
  6. doi:10.1016/j.eml.2018.02.004.
  7. doi:10.1016/j.eml.2022.101720.
  8. doi:10.1177/027836498600500212.
  9. doi:10.1109/IROS.2007.4399105.
  10. doi:10.1080/11762320802557865.
  11. doi:10.1089/soro.2022.0162.
  12. doi:10.1002/nme.6951.
  13. doi:10.1016/j.jmps.2022.104918.
  14. doi:10.1007/978-3-319-50598-5.
  15. doi:10.1016/j.eml.2015.03.002.
  16. doi:10.1016/j.jmps.2020.104022.
  17. doi:10.1016/j.eml.2024.102134.
  18. doi:10.1109/MCS.2023.3253419.
  19. doi:10.1038/s41586-021-04029-6.
  20. doi:10.1177/0278364919842269.
  21. doi:10.1007/s00466-021-02115-0.
  22. arXiv:2402.09625, doi:10.48550/arXiv.2402.09625.
  23. doi:10.1109/LRA.2023.3234819.
  24. doi:10.1016/j.cma.2023.115939.
  25. doi:10.1007/978-0-387-87710-5.
  26. doi:10.1016/j.jmps.2012.09.017.
  27. doi:10.1109/TIT.1983.1056714.
Citations (2)

Summary

We haven't generated a summary for this paper yet.