Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A dynamical interpretation of the connection map of an attractor-repeller decomposition (2403.18815v1)

Published 27 Mar 2024 in math.DS

Abstract: In Conley index theory one may study an invariant set $S$ by decomposing it into an attractor $A$, a repeller $R$, and the orbits connecting the two. The Conley indices of $S$, $A$ and $R$ fit into an exact sequence where a certain connection homomorphism $\Gamma$ plays an important role. In this paper we provide a dynamical interpretation of this map. Roughly, $R$ "emits" an element of its Conley index as a "wavefront", part of which intersects the connecting orbits in $S$. This subset of the wavefront evolves towards $A$ and is then "received" by it to produce an element in its Conley index.

Summary

We haven't generated a summary for this paper yet.