Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Full counting statistics of 1d short-range Riesz gases in confinement (2403.18750v1)

Published 27 Mar 2024 in cond-mat.stat-mech, math-ph, and math.MP

Abstract: We investigate the full counting statistics (FCS) of a harmonically confined 1d short-range Riesz gas consisting of $N$ particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent $k>1$ which includes the Calogero-Moser model for $k=2$. We examine the probability distribution of the number of particles in a finite domain $[-W, W]$ called number distribution, denoted by $\mathcal{N}(W, N)$. We analyze the probability distribution of $\mathcal{N}(W, N)$ and show that it exhibits a large deviation form for large $N$ characterised by a speed $N{\frac{3k+2}{k+2}}$ and by a large deviation function of the fraction $c = \mathcal{N}(W, N)/N$ of the particles inside the domain and $W$. We show that the density profiles that create the large deviations display interesting shape transitions as one varies $c$ and $W$. This is manifested by a third-order phase transition exhibited by the large deviation function that has discontinuous third derivatives. Monte-Carlo (MC) simulations show good agreement with our analytical expressions for the corresponding density profiles. We find that the typical fluctuations of $\mathcal{N}(W, N)$, obtained from our field theoretic calculations are Gaussian distributed with a variance that scales as $N{\nu_k}$, with $\nu_k = (2-k)/(2+k)$. We also present some numerical findings on the mean and the variance. Furthermore, we adapt our formalism to study the index distribution (where the domain is semi-infinite $(-\infty, W])$, linear statistics (the variance), thermodynamic pressure and bulk modulus.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets